Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import openai
|
3 |
+
|
4 |
+
from langchain.chat_models import ChatOpenAI
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.text_splitter import CharacterTextSplitter
|
9 |
+
from langchain.document_loaders import PyPDFLoader
|
10 |
+
|
11 |
+
st.title("📄 PDF Q&A mit OpenAI (LangChain)")
|
12 |
+
|
13 |
+
# -------------------------------
|
14 |
+
# Seitenleiste: API-Key eingeben
|
15 |
+
# -------------------------------
|
16 |
+
with st.sidebar:
|
17 |
+
openai_api_key = st.text_input("OpenAI API Key", type="password")
|
18 |
+
|
19 |
+
# -------------------------------
|
20 |
+
# PDF hochladen
|
21 |
+
# -------------------------------
|
22 |
+
uploaded_file = st.file_uploader("Lade eine PDF-Datei hoch", type=["pdf"])
|
23 |
+
|
24 |
+
# -------------------------------
|
25 |
+
# Eingabefeld für Fragen
|
26 |
+
# -------------------------------
|
27 |
+
question = st.text_input(
|
28 |
+
label="Frage zum Dokument",
|
29 |
+
placeholder="Worum geht es in diesem Dokument?",
|
30 |
+
disabled=not uploaded_file
|
31 |
+
)
|
32 |
+
|
33 |
+
# -------------------------------
|
34 |
+
# Hinweis, falls kein API-Key
|
35 |
+
# -------------------------------
|
36 |
+
if uploaded_file and question and not openai_api_key:
|
37 |
+
st.info("Bitte zuerst deinen OpenAI API Key eingeben, um fortzufahren.")
|
38 |
+
st.stop()
|
39 |
+
|
40 |
+
# -------------------------------
|
41 |
+
# Verarbeite die PDF und beantworte die Frage
|
42 |
+
# -------------------------------
|
43 |
+
if uploaded_file and question and openai_api_key:
|
44 |
+
try:
|
45 |
+
# 1) PDF laden mit PyPDFLoader
|
46 |
+
loader = PyPDFLoader(uploaded_file)
|
47 |
+
|
48 |
+
# 2) Text in Chunks aufteilen
|
49 |
+
# Du kannst hier nach Bedarf den CharacterTextSplitter anpassen,
|
50 |
+
# z. B. chunk_size oder chunk_overlap ändern.
|
51 |
+
text_splitter = CharacterTextSplitter(
|
52 |
+
separator="\n",
|
53 |
+
chunk_size=1000,
|
54 |
+
chunk_overlap=100,
|
55 |
+
length_function=len
|
56 |
+
)
|
57 |
+
|
58 |
+
# load_and_split() übernimmt das Laden und direkte Splitten in Dokumente:
|
59 |
+
documents = loader.load_and_split(text_splitter=text_splitter)
|
60 |
+
|
61 |
+
# 3) Erstelle Embeddings und Vector Store (FAISS)
|
62 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
63 |
+
vectorstore = FAISS.from_documents(documents, embeddings)
|
64 |
+
retriever = vectorstore.as_retriever()
|
65 |
+
|
66 |
+
# 4) Erstelle Retrieval-Kette mit LLM
|
67 |
+
llm = ChatOpenAI(
|
68 |
+
temperature=0,
|
69 |
+
model_name="gpt-3.5-turbo",
|
70 |
+
openai_api_key=openai_api_key
|
71 |
+
)
|
72 |
+
|
73 |
+
qa_chain = RetrievalQA.from_chain_type(
|
74 |
+
llm=llm,
|
75 |
+
chain_type="stuff", # Simplest "Stuff" Chain
|
76 |
+
retriever=retriever
|
77 |
+
)
|
78 |
+
|
79 |
+
# 5) Frage stellen und Antwort bekommen
|
80 |
+
with st.spinner("Suche relevante Textstellen und generiere Antwort..."):
|
81 |
+
answer = qa_chain.run(question)
|
82 |
+
|
83 |
+
# 6) Ausgabe
|
84 |
+
st.write("### Antwort:")
|
85 |
+
st.write(answer)
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
st.error(f"Fehler beim Verarbeiten der PDF: {e}")
|