File size: 1,258 Bytes
86b7493
17b7b74
86b7493
 
d40b082
86b7493
1d8c55e
86b7493
17b7b74
86b7493
64df977
86b7493
 
 
2737fb5
86b7493
 
 
2737fb5
86b7493
2737fb5
 
86b7493
 
 
 
2737fb5
86b7493
 
2737fb5
86b7493
 
 
 
 
d565db2
86b7493
 
 
 
 
 
17b7b74
 
86b7493
 
 
17b7b74
 
86b7493
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
import tiktoken


CHARACTER_LENGTH = "length_function=lambda x: len(x)"
TOKEN_LENGTH = enc = tiktoken.get_encoding("cl100k_base")
length_function = lambda text: len(enc.encode(text))

# Streamlit UI
st.title("Understand Chunk and Token")



chunk_size = st.number_input(
        min_value=1,
        label="Chunk Size",
        value=1000
)


chunk_overlap = st.number_input(
        min_value=1,
        max_value=chunk_size - 1,
        label="Chunk Overlap",
        value=int(chunk_size * 0.2)
)


length_function_option = st.selectbox(
        "Length Function",
        ["Characters", "Tokens"]
    )


length_function_option = Tokens

# Text-Eingabe
doc = st.text_area("Füge hier deinen Text ein:")

# Button zum Splitten des Textes
if st.button("Split Text"):

    splitter = RecursiveCharacterTextSplitter(
            chunk_size=chunk_size,
            chunk_overlap=chunk_overlap,
            length_function=length_function
    )

    
    # Aufteilen des Textes
    splits = splitter.split_text(doc)

    # Ausgabe der erstellten Textsplitter
    for idx, split in enumerate(splits, start=1):
        st.text_area(f"Teilstück {idx}", split, height=150)