File size: 4,593 Bytes
b6475e6
75d536a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6475e6
75d536a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d423f2
75d536a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6475e6
75d536a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import streamlit as st
from langchain.chat_models import ChatOpenAI
from langchain.schema import AIMessage, HumanMessage

# (Optional) If you're using Anthropic
# from langchain.chat_models import ChatAnthropic

# Placeholder functions for other LLMs (DeepSeek, Gemini, Ollama, etc.)
# Implement or import your own logic here.
def get_deepseek_llm(api_key: str):
    """
    TODO: Implement your DeepSeek integration.
    """
    # return your DeepSeek LLM client
    pass

def get_gemini_llm(api_key: str):
    """
    TODO: Implement your Gemini integration.
    """
    # return your Gemini LLM client
    pass

def get_ollama_llm():
    """
    TODO: Implement your local Ollama integration.
    Possibly specify a port, endpoint, etc.
    """
    # return your Ollama LLM client
    pass

def get_claude_llm(api_key: str):
    """
    Example for Anthropic's Claude
    """
    # If you installed anthropic: pip install anthropic
    # from langchain.chat_models import ChatAnthropic
    # llm = ChatAnthropic(anthropic_api_key=api_key)
    # return llm
    pass

def load_llm(selected_model: str, api_key: str):
    """
    Returns the LLM object depending on user selection.
    """
    if selected_model == "OpenAI":
        # Use OpenAI ChatModel
        # By default uses GPT-3.5. You can pass model_name="gpt-4" if you have access.
        llm = ChatOpenAI(temperature=0.7, openai_api_key=api_key)
    
    elif selected_model == "Claude":
        # llm = get_claude_llm(api_key)  # Uncomment once implemented
        llm = None  # Placeholder
        st.warning("Claude is not implemented. Implement the get_claude_llm function.")
    
    elif selected_model == "Gemini":
        # llm = get_gemini_llm(api_key)  # Uncomment once implemented
        llm = None
        st.warning("Gemini is not implemented. Implement the get_gemini_llm function.")
    
    elif selected_model == "DeepSeek":
        # llm = get_deepseek_llm(api_key)  # Uncomment once implemented
        llm = None
        st.warning("DeepSeek is not implemented. Implement the get_deepseek_llm function.")
    
    elif selected_model == "Ollama (local)":
        # llm = get_ollama_llm()  # Uncomment once implemented
        llm = None
        st.warning("Ollama is not implemented. Implement the get_ollama_llm function.")
    
    else:
        llm = None
    
    return llm

def initialize_session_state():
    """
    Initialize the session state for storing conversation history.
    """
    if "messages" not in st.session_state:
        st.session_state["messages"] = []

def main():
    st.title("Multi-LLM Chat App")

    # Sidebar for model selection and API key
    st.sidebar.header("Configuration")
    selected_model = st.sidebar.selectbox(
        "Select an LLM",
        ["OpenAI", "Claude", "Gemini", "DeepSeek", "Ollama (local)"]
    )
    api_key = st.sidebar.text_input("API Key (if needed)", type="password")
    
    st.sidebar.write("---")
    if st.sidebar.button("Clear Chat"):
        st.session_state["messages"] = []

    # Initialize conversation in session state
    initialize_session_state()

    # Load the chosen LLM
    llm = load_llm(selected_model, api_key)

    # Display existing conversation
    for msg in st.session_state["messages"]:
        if msg["role"] == "user":
            st.markdown(f"**You:** {msg['content']}")
        else:
            st.markdown(f"**LLM:** {msg['content']}")

    # User input
    user_input = st.text_input("Type your message here...", "")

    # On submit
    if st.button("Send"):
        if user_input.strip() == "":
            st.warning("Please enter a message before sending.")
        else:
            # Add user message to conversation history
            st.session_state["messages"].append({"role": "user", "content": user_input})

            if llm is None:
                st.error("LLM is not configured or implemented for this choice.")
            else:
                # Prepare messages in a LangChain format
                lc_messages = []
                for msg in st.session_state["messages"]:
                    if msg["role"] == "user":
                        lc_messages.append(HumanMessage(content=msg["content"]))
                    else:
                        lc_messages.append(AIMessage(content=msg["content"]))

                # Call the LLM
                response = llm(lc_messages)
                # Add LLM response to conversation
                st.session_state["messages"].append({"role": "assistant", "content": response.content})

    # End

if __name__ == "__main__":
    main()