import streamlit as st from langchain.chat_models import ChatOpenAI from langchain.schema import AIMessage, HumanMessage # (Optional) If you're using Anthropic # from langchain.chat_models import ChatAnthropic # Placeholder functions for other LLMs (DeepSeek, Gemini, Ollama, etc.) # Implement or import your own logic here. def get_deepseek_llm(api_key: str): """ TODO: Implement your DeepSeek integration. """ # return your DeepSeek LLM client pass def get_gemini_llm(api_key: str): """ TODO: Implement your Gemini integration. """ # return your Gemini LLM client pass def get_ollama_llm(): """ TODO: Implement your local Ollama integration. Possibly specify a port, endpoint, etc. """ # return your Ollama LLM client pass def get_claude_llm(api_key: str): """ Example for Anthropic's Claude """ # If you installed anthropic: pip install anthropic # from langchain.chat_models import ChatAnthropic # llm = ChatAnthropic(anthropic_api_key=api_key) # return llm pass def load_llm(selected_model: str, api_key: str): """ Returns the LLM object depending on user selection. """ if selected_model == "OpenAI": # Use OpenAI ChatModel # By default uses GPT-3.5. You can pass model_name="gpt-4" if you have access. llm = ChatOpenAI(temperature=0.7, openai_api_key=api_key) elif selected_model == "Claude": # llm = get_claude_llm(api_key) # Uncomment once implemented llm = None # Placeholder st.warning("Claude is not implemented. Implement the get_claude_llm function.") elif selected_model == "Gemini": # llm = get_gemini_llm(api_key) # Uncomment once implemented llm = None st.warning("Gemini is not implemented. Implement the get_gemini_llm function.") elif selected_model == "DeepSeek": # llm = get_deepseek_llm(api_key) # Uncomment once implemented llm = None st.warning("DeepSeek is not implemented. Implement the get_deepseek_llm function.") elif selected_model == "Ollama (local)": # llm = get_ollama_llm() # Uncomment once implemented llm = None st.warning("Ollama is not implemented. Implement the get_ollama_llm function.") else: llm = None return llm def initialize_session_state(): """ Initialize the session state for storing conversation history. """ if "messages" not in st.session_state: st.session_state["messages"] = [] def main(): st.title("Multi-LLM Chat App") # Sidebar for model selection and API key st.sidebar.header("Configuration") selected_model = st.sidebar.selectbox( "Select an LLM", ["OpenAI", "Claude", "Gemini", "DeepSeek", "Ollama (local)"] ) api_key = st.sidebar.text_input("API Key (if needed)", type="password") st.sidebar.write("---") if st.sidebar.button("Clear Chat"): st.session_state["messages"] = [] # Initialize conversation in session state initialize_session_state() # Load the chosen LLM llm = load_llm(selected_model, api_key) # Display existing conversation for msg in st.session_state["messages"]: if msg["role"] == "user": st.markdown(f"**You:** {msg['content']}") else: st.markdown(f"**LLM:** {msg['content']}") # User input user_input = st.text_input("Type your message here...", "") # On submit if st.button("Send"): if user_input.strip() == "": st.warning("Please enter a message before sending.") else: # Add user message to conversation history st.session_state["messages"].append({"role": "user", "content": user_input}) if llm is None: st.error("LLM is not configured or implemented for this choice.") else: # Prepare messages in a LangChain format lc_messages = [] for msg in st.session_state["messages"]: if msg["role"] == "user": lc_messages.append(HumanMessage(content=msg["content"])) else: lc_messages.append(AIMessage(content=msg["content"])) # Call the LLM response = llm(lc_messages) # Add LLM response to conversation st.session_state["messages"].append({"role": "assistant", "content": response.content}) # End if __name__ == "__main__": main()