File size: 5,002 Bytes
68a2af8
 
 
7c06f81
 
68a2af8
923ec5b
 
 
 
 
9061f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68a2af8
 
 
9061f45
68a2af8
9061f45
68a2af8
9061f45
 
 
 
 
68a2af8
 
 
 
 
9061f45
 
68a2af8
9061f45
68a2af8
 
 
 
 
 
 
 
 
 
9061f45
087ca78
0970e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68a2af8
 
 
 
9061f45
68a2af8
9061f45
68a2af8
 
0970e0c
68a2af8
0970e0c
 
9061f45
 
 
 
 
0941bd4
68a2af8
9061f45
68a2af8
 
9061f45
68a2af8
7c06f81
68a2af8
7c06f81
68a2af8
 
 
 
 
9061f45
68a2af8
9061f45
68a2af8
9061f45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import streamlit as st
from openai import OpenAI
import sqlite3
import pandas as pd  # Add to top of file


# App UI
st.set_page_config(page_title="Zero SQL", layout="wide")
st.title("Zero SQL - Natural Language to SQL Query")


# Database initialization with caching
@st.cache_resource
def initialize_database():
    conn = sqlite3.connect('database.db')
    cursor = conn.cursor()

    # Create tables
    cursor.execute('''
        CREATE TABLE IF NOT EXISTS Produkte (
            ProduktID INTEGER PRIMARY KEY AUTOINCREMENT,
            Produktname TEXT NOT NULL,
            Preis REAL NOT NULL
        )
    ''')
    
    cursor.execute('''
        CREATE TABLE IF NOT EXISTS Bestellungen (
            BestellungID INTEGER PRIMARY KEY AUTOINCREMENT,
            ProduktID INTEGER NOT NULL,
            Menge INTEGER NOT NULL,
            Bestelldatum TEXT NOT NULL,
            Person TEXT NOT NULL,
            FOREIGN KEY (ProduktID) REFERENCES Produkte(ProduktID)
        )
    ''')

    # Insert sample products
    cursor.execute("SELECT COUNT(*) FROM Produkte")
    if cursor.fetchone()[0] == 0:
        products = [
            ('Laptop', 999.99),
            ('Smartphone', 699.99),
            ('Tablet', 399.99)
        ]
        cursor.executemany("INSERT INTO Produkte (Produktname, Preis) VALUES (?, ?)", products)

    # Insert sample orders
    cursor.execute("SELECT COUNT(*) FROM Bestellungen")
    if cursor.fetchone()[0] == 0:
        orders = [
            (1, 2, '2024-10-20', 'Max Mustermann'),
            (2, 1, '2024-10-21', 'Erika Musterfrau'),
            (3, 3, '2024-10-22', 'Hans Meier')
        ]
        cursor.executemany("INSERT INTO Bestellungen (ProduktID, Menge, Bestelldatum, Person) VALUES (?, ?, ?, ?)", orders)

    conn.commit()
    conn.close()

# Initialize the database
initialize_database()


# Sidebar for API key
with st.sidebar:
    st.header("Configuration")
    api_key = st.text_input("OpenAI API Key", type="password")
    st.markdown("---")
    st.markdown("**Sample Questions:**")
    st.markdown("- Show total sales per product")
    st.markdown("- List orders from Max Mustermann")
    st.markdown("- Find most popular product by quantity")

# Main form
with st.form("query_form"):
    user_input = st.text_area(
        "Enter your data request in natural language:",
        placeholder="e.g. Show all orders over €500",
        height=100
    )
    submitted = st.form_submit_button("πŸš€ Generate Query")

if submitted:
    if not api_key:
        st.error("πŸ”‘ API key is required!")
    elif not user_input:
        st.error("πŸ“ Please enter your data request!")
    else:
        try:
            client = OpenAI(api_key=api_key)
            
            # System prompt with schema
            system_context = """You are a SQL expert. Given these SQL tables:
            CREATE TABLE Produkte (
                ProduktID INTEGER PRIMARY KEY,
                Produktname TEXT NOT NULL,
                Preis REAL NOT NULL
            );
            CREATE TABLE Bestellungen (
                BestellungID INTEGER PRIMARY KEY,
                ProduktID INTEGER,
                Menge INTEGER,
                Bestelldatum TEXT,
                Person TEXT,
                FOREIGN KEY (ProduktID) REFERENCES Produkte(ProduktID)
            );
            Generate ONLY the raw SQL query for the user's request. 
            NEVER use markdown code blocks or any formatting. 
            ONLY output the pure SQL statement."""
        
           # Generate SQL query
            response = client.chat.completions.create(
                model="gpt-4o",
                messages=[
                    {"role": "system", "content": system_context},
                    {"role": "user", "content": user_input}
                ],
                temperature=0.3
            )
            
            # Clean up the response
            sql_query = response.choices[0].message.content.strip()
            sql_query = sql_query.replace("```sql", "").replace("```", "").strip()  # Add this line
            
            # Execute and display results
            with sqlite3.connect('database.db') as conn:
                cursor = conn.cursor()
                cursor.execute(sql_query)
                results = cursor.fetchall()
                column_names = [desc[0] for desc in cursor.description]

            st.subheader("Generated SQL")
            st.code(sql_query, language="sql")

            st.subheader("Results")
            if results:
                df = pd.DataFrame(results, columns=column_names)
                st.dataframe(
                    data=df,
                    use_container_width=True,
                    hide_index=True
                )
            else:
                st.info("No results found", icon="ℹ️")

        except sqlite3.Error as e:
            st.error(f"🚨 SQL Error: {str(e)}")
        except Exception as e:
            st.error(f"πŸ’₯ Unexpected Error: {str(e)}")