Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from .Model import Model | |
| import os | |
| import signal | |
| def handle_timeout(sig, frame): | |
| raise TimeoutError('took too long') | |
| signal.signal(signal.SIGALRM, handle_timeout) | |
| class Llama(Model): | |
| def __init__(self, config, device = "cuda:0"): | |
| super().__init__(config) | |
| self.max_output_tokens = int(config["params"]["max_output_tokens"]) | |
| api_pos = int(config["api_key_info"]["api_key_use"]) | |
| hf_token = config["api_key_info"]["api_keys"][api_pos] | |
| if hf_token is None or len(hf_token) == 0: | |
| hf_token = os.getenv("HF_TOKEN") | |
| self.tokenizer = AutoTokenizer.from_pretrained(self.name, use_auth_token=hf_token) | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| self.name, | |
| torch_dtype=torch.bfloat16, | |
| device_map=device, | |
| token=hf_token | |
| ) | |
| self.terminators = [ | |
| self.tokenizer.eos_token_id, | |
| self.tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
| ] | |
| torch.set_default_tensor_type(torch.cuda.HalfTensor) | |
| def query(self, msg, max_tokens=128000): | |
| messages = self.messages | |
| messages[1]["content"] = msg | |
| input_ids = self.tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| return_tensors="pt", | |
| ).to(self.model.device) | |
| attention_mask = torch.ones(input_ids.shape, device=self.model.device) | |
| try: | |
| signal.alarm(60) | |
| output_tokens = self.model.generate( | |
| input_ids, | |
| max_length=max_tokens, | |
| attention_mask=attention_mask, | |
| eos_token_id=self.terminators, | |
| top_k=50, | |
| do_sample=False | |
| ) | |
| signal.alarm(0) | |
| except TimeoutError as exc: | |
| print("time out") | |
| return("time out") | |
| # Decode the generated tokens back to text | |
| result = self.tokenizer.decode(output_tokens[0][input_ids.shape[-1]:], skip_special_tokens=True) | |
| return result | |
| def get_prompt_length(self,msg): | |
| messages = self.messages | |
| messages[1]["content"] = msg | |
| input_ids = self.tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| return_tensors="pt" | |
| ).to(self.model.device) | |
| return len(input_ids[0]) | |
| def cut_context(self,msg,max_length): | |
| tokens = self.tokenizer.encode(msg, add_special_tokens=True) | |
| # Truncate the tokens to a maximum length | |
| truncated_tokens = tokens[:max_length] | |
| # Decode the truncated tokens back to text | |
| truncated_text = self.tokenizer.decode(truncated_tokens, skip_special_tokens=True) | |
| return truncated_text |