Spaces:
Running
on
Zero
Running
on
Zero
| from .Model import Model | |
| import tiktoken | |
| from transformers import AutoTokenizer | |
| import time | |
| import anthropic | |
| class Claude(Model): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| api_keys = config["api_key_info"]["api_keys"] | |
| api_pos = int(config["api_key_info"]["api_key_use"]) | |
| assert (0 <= api_pos < len(api_keys)), "Please enter a valid API key to use" | |
| self.max_output_tokens = int(config["params"]["max_output_tokens"]) | |
| self.client = anthropic.Anthropic( | |
| # defaults to os.environ.get("ANTHROPIC_API_KEY") | |
| api_key=api_keys[api_pos], | |
| ) | |
| self.llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") | |
| self.encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") | |
| self.seed = 10 | |
| def query(self, msg, max_tokens=128000): | |
| super().query(max_tokens) | |
| while True: | |
| try: | |
| message = self.client.messages.create( | |
| model=self.name, | |
| temperature=self.temperature, | |
| max_tokens=self.max_output_tokens, | |
| messages=[ | |
| {"role": "user", "content": msg} | |
| ] | |
| ) | |
| print(message.content) | |
| time.sleep(1) | |
| break | |
| except Exception as e: | |
| print(e) | |
| time.sleep(10) | |
| return message.content[0].text | |
| def get_prompt_length(self,msg): | |
| encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") | |
| num_tokens = len(encoding.encode(msg)) | |
| return num_tokens | |
| def cut_context(self,msg,max_length): | |
| tokens = self.encoding.encode(msg) | |
| truncated_tokens = tokens[:max_length] | |
| truncated_text = self.encoding.decode(truncated_tokens) | |
| return truncated_text | |