Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
63f814c
1
Parent(s):
e311fe1
update
Browse files- app.py +13 -1
- examples.py +1 -1
app.py
CHANGED
@@ -232,11 +232,23 @@ def generate_model_response(state: State):
|
|
232 |
return state, gr.update(visible=False)
|
233 |
|
234 |
def split_into_sentences(text: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
lines = text.splitlines()
|
236 |
sentences = []
|
237 |
for line in lines:
|
238 |
#sentences.extend(sent_tokenize(line))
|
239 |
-
sentences.extend(line
|
240 |
separators = []
|
241 |
cur_start = 0
|
242 |
for sentence in sentences:
|
|
|
232 |
return state, gr.update(visible=False)
|
233 |
|
234 |
def split_into_sentences(text: str):
|
235 |
+
def rule_based_split(text):
|
236 |
+
sentences = []
|
237 |
+
start = 0
|
238 |
+
for i, char in enumerate(text):
|
239 |
+
if char in ".!?":
|
240 |
+
if i + 1 == len(text) or text[i + 1] == " ":
|
241 |
+
sentences.append(text[start:i + 1].strip())
|
242 |
+
start = i + 1
|
243 |
+
if start < len(text):
|
244 |
+
sentences.append(text[start:].strip())
|
245 |
+
return sentences
|
246 |
+
|
247 |
lines = text.splitlines()
|
248 |
sentences = []
|
249 |
for line in lines:
|
250 |
#sentences.extend(sent_tokenize(line))
|
251 |
+
sentences.extend(rule_based_split(line))
|
252 |
separators = []
|
253 |
cur_start = 0
|
254 |
for sentence in sentences:
|
examples.py
CHANGED
@@ -67,7 +67,7 @@ Given a set of n texts in the context, we aim to find a subset of texts that con
|
|
67 |
|
68 |
Figure 2: Overview of TracLLM. Given an instruction, an output, an LLM, and a long context containing a set of texts, TracLLM searches T2 and T6 from the context that induce an LLM to generate Pwned!
|
69 |
"""
|
70 |
-
question = "Please
|
71 |
|
72 |
return context, question
|
73 |
|
|
|
67 |
|
68 |
Figure 2: Overview of TracLLM. Given an instruction, an output, an LLM, and a long context containing a set of texts, TracLLM searches T2 and T6 from the context that induce an LLM to generate Pwned!
|
69 |
"""
|
70 |
+
question = "Please write a review for this paper."
|
71 |
|
72 |
return context, question
|
73 |
|