Spaces:
Running
on
Zero
Running
on
Zero
Commit
Β·
c28f525
1
Parent(s):
383cea5
update
Browse files- app.py +70 -6
- app_no_config.py +1218 -0
app.py
CHANGED
@@ -82,10 +82,34 @@ current_attr = None
|
|
82 |
current_model_path = None
|
83 |
current_explanation_level = None
|
84 |
current_api_key = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
def initialize_model_and_attr():
|
87 |
"""Initialize model and attribution with default configuration"""
|
88 |
-
global current_llm, current_attr, current_model_path, current_explanation_level, current_api_key
|
89 |
|
90 |
try:
|
91 |
# Check if we need to reinitialize the model
|
@@ -95,7 +119,7 @@ def initialize_model_and_attr():
|
|
95 |
|
96 |
# Check if we need to update attribution
|
97 |
need_attr_update = (current_attr is None or
|
98 |
-
current_explanation_level != DEFAULT_EXPLANATION_LEVEL or
|
99 |
need_model_update)
|
100 |
|
101 |
if need_model_update:
|
@@ -106,15 +130,19 @@ def initialize_model_and_attr():
|
|
106 |
current_api_key = effective_api_key
|
107 |
|
108 |
if need_attr_update:
|
109 |
-
|
|
|
|
|
|
|
|
|
110 |
current_attr = AttnTraceAttribution(
|
111 |
current_llm,
|
112 |
-
explanation_level=
|
113 |
-
K=
|
114 |
q=0.4,
|
115 |
B=30
|
116 |
)
|
117 |
-
current_explanation_level =
|
118 |
|
119 |
return current_llm, current_attr, None
|
120 |
|
@@ -957,6 +985,36 @@ with gr.Blocks(theme=theme, css=custom_css) as demo:
|
|
957 |
'**Color Legend for Context Traceback (by ranking):** <span style="background-color: #FF4444; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Red</span> = 1st (most important) | <span style="background-color: #FF8C42; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Orange</span> = 2nd | <span style="background-color: #FFD93D; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Golden</span> = 3rd | <span style="background-color: #FFF280; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Yellow</span> = 4th-5th | <span style="background-color: #FFF9C4; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Light</span> = 6th+'
|
958 |
)
|
959 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
960 |
|
961 |
# Top section: Wide Context box with tabs
|
962 |
with gr.Row():
|
@@ -1209,6 +1267,12 @@ with gr.Blocks(theme=theme, css=custom_css) as demo:
|
|
1209 |
outputs=[state, response_input_box, basic_response_box, basic_generate_error_box]
|
1210 |
)
|
1211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1212 |
|
1213 |
# gr.Markdown(
|
1214 |
# "Please do not interact with elements while generation/attribution is in progress. This may cause errors. You can refresh the page if you run into issues because of this."
|
|
|
82 |
current_model_path = None
|
83 |
current_explanation_level = None
|
84 |
current_api_key = None
|
85 |
+
current_top_k = 3 # Add top-k tracking
|
86 |
+
|
87 |
+
def update_configuration(explanation_level, top_k):
|
88 |
+
"""Update the global configuration and reinitialize attribution if needed"""
|
89 |
+
global current_explanation_level, current_top_k, current_attr
|
90 |
+
|
91 |
+
# Convert top_k to int
|
92 |
+
top_k = int(top_k)
|
93 |
+
|
94 |
+
# Check if configuration has changed
|
95 |
+
config_changed = (current_explanation_level != explanation_level or
|
96 |
+
current_top_k != top_k)
|
97 |
+
|
98 |
+
if config_changed:
|
99 |
+
print(f"π Updating configuration: explanation_level={explanation_level}, top_k={top_k}")
|
100 |
+
current_explanation_level = explanation_level
|
101 |
+
current_top_k = top_k
|
102 |
+
|
103 |
+
# Reset attribution to force reinitialization with new config
|
104 |
+
current_attr = None
|
105 |
+
|
106 |
+
return gr.update(value=f"β
Configuration updated: {explanation_level} level, top-{top_k}")
|
107 |
+
else:
|
108 |
+
return gr.update(value="βΉοΈ Configuration unchanged")
|
109 |
|
110 |
def initialize_model_and_attr():
|
111 |
"""Initialize model and attribution with default configuration"""
|
112 |
+
global current_llm, current_attr, current_model_path, current_explanation_level, current_api_key, current_top_k
|
113 |
|
114 |
try:
|
115 |
# Check if we need to reinitialize the model
|
|
|
119 |
|
120 |
# Check if we need to update attribution
|
121 |
need_attr_update = (current_attr is None or
|
122 |
+
current_explanation_level != (current_explanation_level or DEFAULT_EXPLANATION_LEVEL) or
|
123 |
need_model_update)
|
124 |
|
125 |
if need_model_update:
|
|
|
130 |
current_api_key = effective_api_key
|
131 |
|
132 |
if need_attr_update:
|
133 |
+
# Use current configuration or defaults
|
134 |
+
explanation_level = current_explanation_level or DEFAULT_EXPLANATION_LEVEL
|
135 |
+
top_k = current_top_k or 3
|
136 |
+
|
137 |
+
print(f"Initializing context traceback with explanation level: {explanation_level}, top_k: {top_k}")
|
138 |
current_attr = AttnTraceAttribution(
|
139 |
current_llm,
|
140 |
+
explanation_level=explanation_level,
|
141 |
+
K=top_k,
|
142 |
q=0.4,
|
143 |
B=30
|
144 |
)
|
145 |
+
current_explanation_level = explanation_level
|
146 |
|
147 |
return current_llm, current_attr, None
|
148 |
|
|
|
985 |
'**Color Legend for Context Traceback (by ranking):** <span style="background-color: #FF4444; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Red</span> = 1st (most important) | <span style="background-color: #FF8C42; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Orange</span> = 2nd | <span style="background-color: #FFD93D; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Golden</span> = 3rd | <span style="background-color: #FFF280; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Yellow</span> = 4th-5th | <span style="background-color: #FFF9C4; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Light</span> = 6th+'
|
986 |
)
|
987 |
|
988 |
+
# Configuration bar
|
989 |
+
with gr.Row():
|
990 |
+
with gr.Column(scale=1):
|
991 |
+
explanation_level_dropdown = gr.Dropdown(
|
992 |
+
choices=["sentence", "paragraph", "text segment"],
|
993 |
+
value="sentence",
|
994 |
+
label="Explanation Level",
|
995 |
+
info="How to segment the context for traceback analysis"
|
996 |
+
)
|
997 |
+
with gr.Column(scale=1):
|
998 |
+
top_k_dropdown = gr.Dropdown(
|
999 |
+
choices=["3", "5", "10"],
|
1000 |
+
value="5",
|
1001 |
+
label="Top-K Value",
|
1002 |
+
info="Number of most important text segments to highlight"
|
1003 |
+
)
|
1004 |
+
with gr.Column(scale=1):
|
1005 |
+
apply_config_button = gr.Button(
|
1006 |
+
"Apply Configuration",
|
1007 |
+
variant="secondary",
|
1008 |
+
size="sm"
|
1009 |
+
)
|
1010 |
+
with gr.Column(scale=2):
|
1011 |
+
config_status_text = gr.Textbox(
|
1012 |
+
label="Configuration Status",
|
1013 |
+
value="Ready to apply configuration",
|
1014 |
+
interactive=False,
|
1015 |
+
lines=1
|
1016 |
+
)
|
1017 |
+
|
1018 |
|
1019 |
# Top section: Wide Context box with tabs
|
1020 |
with gr.Row():
|
|
|
1267 |
outputs=[state, response_input_box, basic_response_box, basic_generate_error_box]
|
1268 |
)
|
1269 |
|
1270 |
+
# Configuration update handler
|
1271 |
+
apply_config_button.click(
|
1272 |
+
fn=update_configuration,
|
1273 |
+
inputs=[explanation_level_dropdown, top_k_dropdown],
|
1274 |
+
outputs=[config_status_text]
|
1275 |
+
)
|
1276 |
|
1277 |
# gr.Markdown(
|
1278 |
# "Please do not interact with elements while generation/attribution is in progress. This may cause errors. You can refresh the page if you run into issues because of this."
|
app_no_config.py
ADDED
@@ -0,0 +1,1218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Acknowledgement: This demo code is adapted from the original Hugging Face Space "ContextCite"
|
2 |
+
# (https://huggingface.co/spaces/contextcite/context-cite).
|
3 |
+
import os
|
4 |
+
from enum import Enum
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Dict, List, Any, Optional
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import spaces
|
10 |
+
import nltk
|
11 |
+
import base64
|
12 |
+
import traceback
|
13 |
+
from src.utils import split_into_sentences as split_into_sentences_utils
|
14 |
+
# --- AttnTrace imports (from app_full.py) ---
|
15 |
+
from src.models import create_model
|
16 |
+
from src.attribution import AttnTraceAttribution
|
17 |
+
from src.prompts import wrap_prompt
|
18 |
+
from gradio_highlightedtextbox import HighlightedTextbox
|
19 |
+
from examples import run_example_1, run_example_2, run_example_3, run_example_4, run_example_5, run_example_6
|
20 |
+
from functools import partial
|
21 |
+
os.makedirs("/home/user/nltk_data", exist_ok=True)
|
22 |
+
# Download punkt to a known path
|
23 |
+
nltk.download("punkt", download_dir="/home/user/nltk_data")
|
24 |
+
# Tell nltk where to find it
|
25 |
+
nltk.data.path.append("/home/user/nltk_data")
|
26 |
+
from nltk.tokenize import sent_tokenize
|
27 |
+
|
28 |
+
# Load original app constants
|
29 |
+
APP_TITLE = '<div class="app-title"><span class="brand">AttnTrace: </span><span class="subtitle">Attention-based Context Traceback for Long-Context LLMs</span></div>'
|
30 |
+
APP_DESCRIPTION = """AttnTrace traces a model's generated statements back to specific parts of the context using attention-based traceback. Try it out with Meta-Llama-3.1-8B-Instruct here! See the [[paper](https://arxiv.org/abs/2506.04202)] and [[code](https://github.com/Wang-Yanting/TracLLM-Kit)] for more!
|
31 |
+
Maintained by the AttnTrace team."""
|
32 |
+
# NEW_TEXT = """Long-context large language models (LLMs), such as Gemini-2.5-Pro and Claude-Sonnet-4, are increasingly used to empower advanced AI systems, including retrieval-augmented generation (RAG) pipelines and autonomous agents. In these systems, an LLM receives an instruction along with a contextβoften consisting of texts retrieved from a knowledge database or memoryβand generates a response that is contextually grounded by following the instruction. Recent studies have designed solutions to trace back to a subset of texts in the context that contributes most to the response generated by the LLM. These solutions have numerous real-world applications, including performing post-attack forensic analysis and improving the interpretability and trustworthiness of LLM outputs. While significant efforts have been made, state-of-the-art solutions such as TracLLM often lead to a high computation cost, e.g., it takes TracLLM hundreds of seconds to perform traceback for a single response-context pair. In this work, we propose {\name}, a new context traceback method based on the attention weights produced by an LLM for a prompt. To effectively utilize attention weights, we introduce two techniques designed to enhance the effectiveness of {\name}, and we provide theoretical insights for our design choice. %Moreover, we perform both theoretical analysis and empirical evaluation to demonstrate their effectiveness.
|
33 |
+
# We also perform a systematic evaluation for {\name}. The results demonstrate that {\name} is more accurate and efficient than existing state-of-the-art context traceback methods. We also show {\name} can improve state-of-the-art methods in detecting prompt injection under long contexts through the attribution-before-detection paradigm. As a real-world application, we demonstrate that {\name} can effectively pinpoint injected instructions in a paper designed to manipulate LLM-generated reviews.
|
34 |
+
# The code and data will be open-sourced. """
|
35 |
+
# EDIT_TEXT = "Feel free to edit!"
|
36 |
+
GENERATE_CONTEXT_TOO_LONG_TEXT = (
|
37 |
+
'<em style="color: red;">Context is too long for the current model.</em>'
|
38 |
+
)
|
39 |
+
ATTRIBUTE_CONTEXT_TOO_LONG_TEXT = '<em style="color: red;">Context is too long for the current traceback method.</em>'
|
40 |
+
CONTEXT_LINES = 20
|
41 |
+
CONTEXT_MAX_LINES = 40
|
42 |
+
SELECTION_DEFAULT_TEXT = "Click on a sentence in the response to traceback!"
|
43 |
+
SELECTION_DEFAULT_VALUE = [(SELECTION_DEFAULT_TEXT, None)]
|
44 |
+
SOURCES_INFO = 'These are the texts that contribute most to the response.'
|
45 |
+
# SOURCES_IN_CONTEXT_INFO = (
|
46 |
+
# "This shows the important sentences highlighted within their surrounding context from the text above. Colors indicate ranking: Red (1st), Orange (2nd), Golden (3rd), Yellow (4th-5th), Light (6th+)."
|
47 |
+
# )
|
48 |
+
|
49 |
+
MODEL_PATHS = [
|
50 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
51 |
+
]
|
52 |
+
MAX_TOKENS = {
|
53 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct": 131072,
|
54 |
+
}
|
55 |
+
DEFAULT_MODEL_PATH = MODEL_PATHS[0]
|
56 |
+
EXPLANATION_LEVELS = ["sentence", "paragraph", "text segment"]
|
57 |
+
DEFAULT_EXPLANATION_LEVEL = "sentence"
|
58 |
+
|
59 |
+
class WorkflowState(Enum):
|
60 |
+
WAITING_TO_GENERATE = 0
|
61 |
+
WAITING_TO_SELECT = 1
|
62 |
+
READY_TO_ATTRIBUTE = 2
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class State:
|
66 |
+
workflow_state: WorkflowState
|
67 |
+
context: str
|
68 |
+
query: str
|
69 |
+
response: str
|
70 |
+
start_index: int
|
71 |
+
end_index: int
|
72 |
+
scores: np.ndarray
|
73 |
+
answer: str
|
74 |
+
highlighted_context: str
|
75 |
+
full_response: str
|
76 |
+
explained_response_part: str
|
77 |
+
last_query_used: str = ""
|
78 |
+
|
79 |
+
# --- Dynamic Model and Attribution Management ---
|
80 |
+
current_llm = None
|
81 |
+
current_attr = None
|
82 |
+
current_model_path = None
|
83 |
+
current_explanation_level = None
|
84 |
+
current_api_key = None
|
85 |
+
|
86 |
+
def initialize_model_and_attr():
|
87 |
+
"""Initialize model and attribution with default configuration"""
|
88 |
+
global current_llm, current_attr, current_model_path, current_explanation_level, current_api_key
|
89 |
+
|
90 |
+
try:
|
91 |
+
# Check if we need to reinitialize the model
|
92 |
+
need_model_update = (current_llm is None or
|
93 |
+
current_model_path != DEFAULT_MODEL_PATH or
|
94 |
+
current_api_key != os.getenv("HF_TOKEN"))
|
95 |
+
|
96 |
+
# Check if we need to update attribution
|
97 |
+
need_attr_update = (current_attr is None or
|
98 |
+
current_explanation_level != DEFAULT_EXPLANATION_LEVEL or
|
99 |
+
need_model_update)
|
100 |
+
|
101 |
+
if need_model_update:
|
102 |
+
print(f"Initializing model: {DEFAULT_MODEL_PATH}")
|
103 |
+
effective_api_key = os.getenv("HF_TOKEN")
|
104 |
+
current_llm = create_model(model_path=DEFAULT_MODEL_PATH, api_key=effective_api_key, device="cuda")
|
105 |
+
current_model_path = DEFAULT_MODEL_PATH
|
106 |
+
current_api_key = effective_api_key
|
107 |
+
|
108 |
+
if need_attr_update:
|
109 |
+
print(f"Initializing context traceback with explanation level: {DEFAULT_EXPLANATION_LEVEL}")
|
110 |
+
current_attr = AttnTraceAttribution(
|
111 |
+
current_llm,
|
112 |
+
explanation_level=DEFAULT_EXPLANATION_LEVEL,
|
113 |
+
K=3,
|
114 |
+
q=0.4,
|
115 |
+
B=30
|
116 |
+
)
|
117 |
+
current_explanation_level = DEFAULT_EXPLANATION_LEVEL
|
118 |
+
|
119 |
+
return current_llm, current_attr, None
|
120 |
+
|
121 |
+
except Exception as e:
|
122 |
+
error_msg = f"Error initializing model/traceback: {str(e)}"
|
123 |
+
print(error_msg)
|
124 |
+
traceback.print_exc()
|
125 |
+
return None, None, error_msg
|
126 |
+
|
127 |
+
# Remove immediate initialization - let lazy initialization work
|
128 |
+
llm, attr, error_msg = initialize_model_and_attr() # Commented out to avoid main-thread CUDA initialization
|
129 |
+
|
130 |
+
# Images replaced with CSS textures and gradients - no longer needed
|
131 |
+
|
132 |
+
def clear_state():
|
133 |
+
return State(
|
134 |
+
workflow_state=WorkflowState.WAITING_TO_GENERATE,
|
135 |
+
context="",
|
136 |
+
query="",
|
137 |
+
response="",
|
138 |
+
start_index=0,
|
139 |
+
end_index=0,
|
140 |
+
scores=np.array([]),
|
141 |
+
answer="",
|
142 |
+
highlighted_context="",
|
143 |
+
full_response="",
|
144 |
+
explained_response_part="",
|
145 |
+
last_query_used=""
|
146 |
+
)
|
147 |
+
|
148 |
+
def load_an_example(example_loader_func, state: State):
|
149 |
+
context, query = example_loader_func()
|
150 |
+
# Update both UI and state
|
151 |
+
state.context = context
|
152 |
+
state.query = query
|
153 |
+
state.workflow_state = WorkflowState.WAITING_TO_GENERATE
|
154 |
+
# Clear previous results
|
155 |
+
state.response = ""
|
156 |
+
state.answer = ""
|
157 |
+
state.full_response = ""
|
158 |
+
state.explained_response_part = ""
|
159 |
+
print(f"Loaded example - Context: {len(context)} chars, Query: {query[:50]}...")
|
160 |
+
return (
|
161 |
+
context, # basic_context_box
|
162 |
+
query, # basic_query_box
|
163 |
+
state,
|
164 |
+
"", # response_input_box - clear it
|
165 |
+
gr.update(value=[("Click the 'Generate/Use Response' button above to see response text here for traceback analysis.", None)]), # basic_response_box - keep visible
|
166 |
+
gr.update(selected=0) # basic_context_tabs - switch to first tab
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
def get_max_tokens(model_path: str):
|
171 |
+
return MAX_TOKENS.get(model_path, 2048) # Default fallback
|
172 |
+
|
173 |
+
|
174 |
+
def get_scroll_js_code(elem_id):
|
175 |
+
return f"""
|
176 |
+
function scrollToElement() {{
|
177 |
+
const element = document.getElementById("{elem_id}");
|
178 |
+
element.scrollIntoView({{ behavior: "smooth", block: "nearest" }});
|
179 |
+
}}
|
180 |
+
"""
|
181 |
+
|
182 |
+
def basic_update(context: str, query: str, state: State):
|
183 |
+
state.context = context
|
184 |
+
state.query = query
|
185 |
+
state.workflow_state = WorkflowState.WAITING_TO_GENERATE
|
186 |
+
return (
|
187 |
+
gr.update(value=[("Click the 'Generate/Use Response' button above to see response text here for traceback analysis.", None)]), # basic_response_box - keep visible
|
188 |
+
gr.update(selected=0), # basic_context_tabs - switch to first tab
|
189 |
+
state,
|
190 |
+
)
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
@spaces.GPU
|
197 |
+
def generate_model_response(state: State):
|
198 |
+
# Validate inputs first with debug info
|
199 |
+
print(f"Validation - Context length: {len(state.context) if state.context else 0}")
|
200 |
+
print(f"Validation - Query: {state.query[:50] if state.query else 'empty'}...")
|
201 |
+
|
202 |
+
if not state.context or not state.context.strip():
|
203 |
+
print("β Validation failed: No context")
|
204 |
+
return state, gr.update(value=[("β Please enter context before generating response! If you just changed configuration, try reloading an example.", None)], visible=True)
|
205 |
+
|
206 |
+
if not state.query or not state.query.strip():
|
207 |
+
print("β Validation failed: No query")
|
208 |
+
return state, gr.update(value=[("β Please enter a query before generating response! If you just changed configuration, try reloading an example.", None)], visible=True)
|
209 |
+
|
210 |
+
# Initialize model and attribution with default configuration
|
211 |
+
print(f"π§ Generating response with explanation_level: {DEFAULT_EXPLANATION_LEVEL}")
|
212 |
+
#llm, attr, error_msg = initialize_model_and_attr()
|
213 |
+
|
214 |
+
if llm is None or attr is None:
|
215 |
+
error_text = error_msg if error_msg else "Model initialization failed!"
|
216 |
+
return state, gr.update(value=[(f"β {error_text}", None)], visible=True)
|
217 |
+
|
218 |
+
prompt = wrap_prompt(state.query, [state.context])
|
219 |
+
print(f"Generated prompt for {DEFAULT_MODEL_PATH}: {prompt[:200]}...") # Debug log
|
220 |
+
|
221 |
+
# Check context length
|
222 |
+
if len(prompt.split()) > get_max_tokens(DEFAULT_MODEL_PATH) - 512:
|
223 |
+
return state, gr.update(value=[(GENERATE_CONTEXT_TOO_LONG_TEXT, None)], visible=True)
|
224 |
+
|
225 |
+
answer = llm.query(prompt)
|
226 |
+
print(f"Model response: {answer}") # Debug log
|
227 |
+
|
228 |
+
state.response = answer
|
229 |
+
state.answer = answer
|
230 |
+
state.full_response = answer
|
231 |
+
state.workflow_state = WorkflowState.WAITING_TO_SELECT
|
232 |
+
return state, gr.update(visible=False)
|
233 |
+
|
234 |
+
def split_into_sentences(text: str):
|
235 |
+
def rule_based_split(text):
|
236 |
+
sentences = []
|
237 |
+
start = 0
|
238 |
+
for i, char in enumerate(text):
|
239 |
+
if char in ".?γ":
|
240 |
+
if i + 1 == len(text) or text[i + 1] == " ":
|
241 |
+
sentences.append(text[start:i + 1].strip())
|
242 |
+
start = i + 1
|
243 |
+
if start < len(text):
|
244 |
+
sentences.append(text[start:].strip())
|
245 |
+
return sentences
|
246 |
+
|
247 |
+
lines = text.splitlines()
|
248 |
+
sentences = []
|
249 |
+
for line in lines:
|
250 |
+
#sentences.extend(sent_tokenize(line))
|
251 |
+
sentences.extend(rule_based_split(line))
|
252 |
+
separators = []
|
253 |
+
cur_start = 0
|
254 |
+
for sentence in sentences:
|
255 |
+
cur_end = text.find(sentence, cur_start)
|
256 |
+
separators.append(text[cur_start:cur_end])
|
257 |
+
cur_start = cur_end + len(sentence)
|
258 |
+
return sentences, separators
|
259 |
+
|
260 |
+
|
261 |
+
def basic_highlight_response(
|
262 |
+
response: str, selected_index: int, num_sources: int = -1
|
263 |
+
):
|
264 |
+
sentences, separators = split_into_sentences(response)
|
265 |
+
ht = []
|
266 |
+
if num_sources == -1:
|
267 |
+
citations_text = "Traceback!"
|
268 |
+
elif num_sources == 0:
|
269 |
+
citations_text = "No important text!"
|
270 |
+
else:
|
271 |
+
citations_text = f"[{','.join(str(i) for i in range(1, num_sources + 1))}]"
|
272 |
+
for i, (sentence, separator) in enumerate(zip(sentences, separators)):
|
273 |
+
label = citations_text if i == selected_index else "Traceback"
|
274 |
+
# Hack to ignore punctuation
|
275 |
+
if len(sentence) >= 4:
|
276 |
+
ht.append((separator + sentence, label))
|
277 |
+
else:
|
278 |
+
ht.append((separator + sentence, None))
|
279 |
+
color_map = {"Click to cite!": "blue", citations_text: "yellow"}
|
280 |
+
return gr.HighlightedText(value=ht, color_map=color_map)
|
281 |
+
|
282 |
+
def basic_highlight_response_with_visibility(
|
283 |
+
response: str, selected_index: int, num_sources: int = -1, visible: bool = True
|
284 |
+
):
|
285 |
+
"""Version of basic_highlight_response that also sets visibility"""
|
286 |
+
sentences, separators = split_into_sentences(response)
|
287 |
+
ht = []
|
288 |
+
if num_sources == -1:
|
289 |
+
citations_text = "Traceback!"
|
290 |
+
elif num_sources == 0:
|
291 |
+
citations_text = "No important text!"
|
292 |
+
else:
|
293 |
+
citations_text = f"[{','.join(str(i) for i in range(1, num_sources + 1))}]"
|
294 |
+
for i, (sentence, separator) in enumerate(zip(sentences, separators)):
|
295 |
+
label = citations_text if i == selected_index else "Traceback"
|
296 |
+
# Hack to ignore punctuation
|
297 |
+
if len(sentence) >= 4:
|
298 |
+
ht.append((separator + sentence, label))
|
299 |
+
else:
|
300 |
+
ht.append((separator + sentence, None))
|
301 |
+
color_map = {"Click to cite!": "blue", citations_text: "yellow"}
|
302 |
+
return gr.update(value=ht, color_map=color_map, visible=visible)
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
def basic_update_highlighted_response(evt: gr.SelectData, state: State):
|
307 |
+
response_update = basic_highlight_response(state.response, evt.index)
|
308 |
+
return response_update, state
|
309 |
+
|
310 |
+
def unified_response_handler(response_text: str, state: State):
|
311 |
+
"""Handle both LLM generation and manual input based on whether text is provided"""
|
312 |
+
|
313 |
+
# Check if instruction has changed from what was used to generate current response
|
314 |
+
instruction_changed = hasattr(state, 'last_query_used') and state.last_query_used != state.query
|
315 |
+
|
316 |
+
# If response_text is empty, whitespace, or instruction changed, generate from LLM
|
317 |
+
if not response_text or not response_text.strip() or instruction_changed:
|
318 |
+
if instruction_changed:
|
319 |
+
print("π Instruction changed, generating new response from LLM...")
|
320 |
+
else:
|
321 |
+
print("π€ Generating response from LLM...")
|
322 |
+
|
323 |
+
# Validate inputs first
|
324 |
+
if not state.context or not state.context.strip():
|
325 |
+
return (
|
326 |
+
state,
|
327 |
+
response_text, # Keep current text box content
|
328 |
+
gr.update(visible=False), # Keep response box hidden
|
329 |
+
gr.update(value=[("β Please enter context before generating response!", None)], visible=True)
|
330 |
+
)
|
331 |
+
|
332 |
+
if not state.query or not state.query.strip():
|
333 |
+
return (
|
334 |
+
state,
|
335 |
+
response_text, # Keep current text box content
|
336 |
+
gr.update(visible=False), # Keep response box hidden
|
337 |
+
gr.update(value=[("β Please enter a query before generating response!", None)], visible=True)
|
338 |
+
)
|
339 |
+
|
340 |
+
# Initialize model and generate response
|
341 |
+
#llm, attr, error_msg = initialize_model_and_attr()
|
342 |
+
|
343 |
+
if llm is None:
|
344 |
+
error_text = error_msg if error_msg else "Model initialization failed!"
|
345 |
+
return (
|
346 |
+
state,
|
347 |
+
response_text, # Keep current text box content
|
348 |
+
gr.update(visible=False), # Keep response box hidden
|
349 |
+
gr.update(value=[(f"β {error_text}", None)], visible=True)
|
350 |
+
)
|
351 |
+
|
352 |
+
prompt = wrap_prompt(state.query, [state.context])
|
353 |
+
|
354 |
+
# Check context length
|
355 |
+
if len(prompt.split()) > get_max_tokens(DEFAULT_MODEL_PATH) - 512:
|
356 |
+
return (
|
357 |
+
state,
|
358 |
+
response_text, # Keep current text box content
|
359 |
+
gr.update(visible=False), # Keep response box hidden
|
360 |
+
gr.update(value=[(GENERATE_CONTEXT_TOO_LONG_TEXT, None)], visible=True)
|
361 |
+
)
|
362 |
+
|
363 |
+
# Generate response
|
364 |
+
answer = llm.query(prompt)
|
365 |
+
print(f"Generated response: {answer[:100]}...")
|
366 |
+
|
367 |
+
# Update state and UI
|
368 |
+
state.response = answer
|
369 |
+
state.answer = answer
|
370 |
+
state.full_response = answer
|
371 |
+
state.last_query_used = state.query # Track which query was used for this response
|
372 |
+
state.workflow_state = WorkflowState.WAITING_TO_SELECT
|
373 |
+
|
374 |
+
# Create highlighted response and show it
|
375 |
+
response_update = basic_highlight_response_with_visibility(state.response, -1, visible=True)
|
376 |
+
|
377 |
+
return (
|
378 |
+
state,
|
379 |
+
answer, # Put generated response in text box
|
380 |
+
response_update, # Update clickable response content
|
381 |
+
gr.update(visible=False) # Hide error box
|
382 |
+
)
|
383 |
+
|
384 |
+
else:
|
385 |
+
# Use provided text as manual response
|
386 |
+
print("βοΈ Using manual response...")
|
387 |
+
manual_text = response_text.strip()
|
388 |
+
|
389 |
+
# Update state with manual response
|
390 |
+
state.response = manual_text
|
391 |
+
state.answer = manual_text
|
392 |
+
state.full_response = manual_text
|
393 |
+
state.last_query_used = state.query # Track current query for this response
|
394 |
+
state.workflow_state = WorkflowState.WAITING_TO_SELECT
|
395 |
+
|
396 |
+
# Create highlighted response for selection
|
397 |
+
response_update = basic_highlight_response_with_visibility(state.response, -1, visible=True)
|
398 |
+
|
399 |
+
return (
|
400 |
+
state,
|
401 |
+
manual_text, # Keep text in text box
|
402 |
+
response_update, # Update clickable response content
|
403 |
+
gr.update(visible=False) # Hide error box
|
404 |
+
)
|
405 |
+
|
406 |
+
def get_color_by_rank(rank, total_items):
|
407 |
+
"""Get color based purely on rank position for better visual distinction"""
|
408 |
+
if total_items == 0:
|
409 |
+
return "#F0F0F0", "rgba(240, 240, 240, 0.8)"
|
410 |
+
|
411 |
+
# Pure ranking-based color assignment for clear visual hierarchy
|
412 |
+
if rank == 1: # Highest importance - Strong Red
|
413 |
+
bg_color = "#FF4444" # Bright red
|
414 |
+
rgba_color = "rgba(255, 68, 68, 0.9)"
|
415 |
+
elif rank == 2: # Second highest - Orange
|
416 |
+
bg_color = "#FF8C42" # Bright orange
|
417 |
+
rgba_color = "rgba(255, 140, 66, 0.8)"
|
418 |
+
elif rank == 3: # Third highest - Golden Yellow
|
419 |
+
bg_color = "#FFD93D" # Golden yellow
|
420 |
+
rgba_color = "rgba(255, 217, 61, 0.8)"
|
421 |
+
elif rank <= 5: # 4th-5th - Light Yellow
|
422 |
+
bg_color = "#FFF280" # Standard yellow
|
423 |
+
rgba_color = "rgba(255, 242, 128, 0.7)"
|
424 |
+
else: # Lower importance - Very Light Yellow
|
425 |
+
bg_color = "#FFF9C4" # Very light yellow
|
426 |
+
rgba_color = "rgba(255, 249, 196, 0.6)"
|
427 |
+
|
428 |
+
return bg_color, rgba_color
|
429 |
+
|
430 |
+
@spaces.GPU
|
431 |
+
def basic_get_scores_and_sources_full_response(state: State):
|
432 |
+
"""Traceback the entire response instead of a selected segment"""
|
433 |
+
|
434 |
+
|
435 |
+
# Use the entire response as the explained part
|
436 |
+
state.explained_response_part = state.full_response
|
437 |
+
|
438 |
+
# Attribution using default configuration
|
439 |
+
#_, attr, error_msg = initialize_model_and_attr()
|
440 |
+
|
441 |
+
if attr is None:
|
442 |
+
error_text = error_msg if error_msg else "Traceback initialization failed!"
|
443 |
+
return (
|
444 |
+
gr.update(value=[("", None)], visible=False),
|
445 |
+
gr.update(selected=0),
|
446 |
+
gr.update(visible=False),
|
447 |
+
gr.update(value=""),
|
448 |
+
gr.update(value=[(f"β {error_text}", None)], visible=True),
|
449 |
+
state,
|
450 |
+
)
|
451 |
+
try:
|
452 |
+
# Validate attribution inputs
|
453 |
+
if not state.context or not state.context.strip():
|
454 |
+
return (
|
455 |
+
gr.update(value=[("", None)], visible=False),
|
456 |
+
gr.update(selected=0),
|
457 |
+
gr.update(visible=False),
|
458 |
+
gr.update(value=""),
|
459 |
+
gr.update(value=[("β No context available for traceback!", None)], visible=True),
|
460 |
+
state,
|
461 |
+
)
|
462 |
+
|
463 |
+
if not state.query or not state.query.strip():
|
464 |
+
return (
|
465 |
+
gr.update(value=[("", None)], visible=False),
|
466 |
+
gr.update(selected=0),
|
467 |
+
gr.update(visible=False),
|
468 |
+
gr.update(value=""),
|
469 |
+
gr.update(value=[("β No query available for traceback!", None)], visible=True),
|
470 |
+
state,
|
471 |
+
)
|
472 |
+
|
473 |
+
if not state.full_response or not state.full_response.strip():
|
474 |
+
return (
|
475 |
+
gr.update(value=[("", None)], visible=False),
|
476 |
+
gr.update(selected=0),
|
477 |
+
gr.update(visible=False),
|
478 |
+
gr.update(value=""),
|
479 |
+
gr.update(value=[("β No response available for traceback!", None)], visible=True),
|
480 |
+
state,
|
481 |
+
)
|
482 |
+
|
483 |
+
print(f"start full response traceback with explanation_level: {DEFAULT_EXPLANATION_LEVEL}")
|
484 |
+
print(f"context length: {len(state.context)}, query: {state.query[:100]}...")
|
485 |
+
print(f"full response: {state.full_response[:100]}...")
|
486 |
+
print(f"tracing entire response (length: {len(state.full_response)} chars)")
|
487 |
+
|
488 |
+
texts, important_ids, importance_scores, _, _ = attr.attribute(
|
489 |
+
state.query, [state.context], state.full_response, state.full_response
|
490 |
+
)
|
491 |
+
print("end full response traceback")
|
492 |
+
print(f"explanation_level: {DEFAULT_EXPLANATION_LEVEL}")
|
493 |
+
print(f"texts count: {len(texts)} (how context was segmented)")
|
494 |
+
if len(texts) > 0:
|
495 |
+
print(f"sample text segments: {[text[:50] + '...' if len(text) > 50 else text for text in texts[:3]]}")
|
496 |
+
print(f"important_ids: {important_ids}")
|
497 |
+
print("importance_scores: ", importance_scores)
|
498 |
+
|
499 |
+
if not importance_scores:
|
500 |
+
return (
|
501 |
+
gr.update(value=[("", None)], visible=False),
|
502 |
+
gr.update(selected=0),
|
503 |
+
gr.update(visible=False),
|
504 |
+
gr.update(value=""),
|
505 |
+
gr.update(value=[("β No traceback scores generated for full response!", None)], visible=True),
|
506 |
+
state,
|
507 |
+
)
|
508 |
+
|
509 |
+
state.scores = np.array(importance_scores)
|
510 |
+
|
511 |
+
# Highlighted sources with ranking-based colors
|
512 |
+
highlighted_text = []
|
513 |
+
sorted_indices = np.argsort(state.scores)[::-1]
|
514 |
+
total_sources = len(important_ids)
|
515 |
+
|
516 |
+
for rank, i in enumerate(sorted_indices):
|
517 |
+
source_text = texts[important_ids[i]]
|
518 |
+
_ = get_color_by_rank(rank + 1, total_sources)
|
519 |
+
|
520 |
+
highlighted_text.append(
|
521 |
+
(
|
522 |
+
source_text,
|
523 |
+
f"rank_{rank+1}",
|
524 |
+
)
|
525 |
+
)
|
526 |
+
|
527 |
+
# In-context highlights with ranking-based colors - show ALL text
|
528 |
+
in_context_highlighted_text = []
|
529 |
+
ranks = {important_ids[i]: rank for rank, i in enumerate(sorted_indices)}
|
530 |
+
|
531 |
+
for i in range(len(texts)):
|
532 |
+
source_text = texts[i]
|
533 |
+
|
534 |
+
# Skip or don't highlight segments that are only newlines or whitespace
|
535 |
+
if source_text.strip() == "":
|
536 |
+
# For whitespace-only segments, add them without highlighting
|
537 |
+
in_context_highlighted_text.append((source_text, None))
|
538 |
+
elif i in important_ids:
|
539 |
+
# Only highlight if the segment has actual content (not just newlines)
|
540 |
+
if source_text.strip(): # Has non-whitespace content
|
541 |
+
rank = ranks[i] + 1
|
542 |
+
|
543 |
+
# Split the segment to separate leading/trailing newlines from content
|
544 |
+
# This prevents newlines from being highlighted
|
545 |
+
leading_whitespace = ""
|
546 |
+
trailing_whitespace = ""
|
547 |
+
content = source_text
|
548 |
+
|
549 |
+
# Extract leading newlines/whitespace
|
550 |
+
while content and content[0] in ['\n', '\r', '\t', ' ']:
|
551 |
+
leading_whitespace += content[0]
|
552 |
+
content = content[1:]
|
553 |
+
|
554 |
+
# Extract trailing newlines/whitespace
|
555 |
+
while content and content[-1] in ['\n', '\r', '\t', ' ']:
|
556 |
+
trailing_whitespace = content[-1] + trailing_whitespace
|
557 |
+
content = content[:-1]
|
558 |
+
|
559 |
+
# Add the parts separately: whitespace unhighlighted, content highlighted
|
560 |
+
if leading_whitespace:
|
561 |
+
in_context_highlighted_text.append((leading_whitespace, None))
|
562 |
+
if content:
|
563 |
+
in_context_highlighted_text.append((content, f"rank_{rank}"))
|
564 |
+
if trailing_whitespace:
|
565 |
+
in_context_highlighted_text.append((trailing_whitespace, None))
|
566 |
+
else:
|
567 |
+
# Even if marked as important, don't highlight whitespace-only segments
|
568 |
+
in_context_highlighted_text.append((source_text, None))
|
569 |
+
else:
|
570 |
+
# Add unhighlighted text for non-important segments
|
571 |
+
in_context_highlighted_text.append((source_text, None))
|
572 |
+
|
573 |
+
# Enhanced color map with ranking-based colors
|
574 |
+
color_map = {}
|
575 |
+
for rank in range(len(important_ids)):
|
576 |
+
_, rgba_color = get_color_by_rank(rank + 1, total_sources)
|
577 |
+
color_map[f"rank_{rank+1}"] = rgba_color
|
578 |
+
dummy_update = gr.update(
|
579 |
+
value=f"AttnTrace_{state.response}_{state.start_index}_{state.end_index}"
|
580 |
+
)
|
581 |
+
attribute_error_update = gr.update(visible=False)
|
582 |
+
|
583 |
+
# Combine sources and highlighted context into a single display
|
584 |
+
# Sources at the top
|
585 |
+
combined_display = []
|
586 |
+
|
587 |
+
# Add sources header (no highlighting for UI elements)
|
588 |
+
combined_display.append(("βββ FULL RESPONSE TRACEBACK RESULTS βββ\n", None))
|
589 |
+
combined_display.append(("These are the text segments that contribute most to the entire response:\n\n", None))
|
590 |
+
|
591 |
+
# Add sources using available data
|
592 |
+
for rank, i in enumerate(sorted_indices):
|
593 |
+
if i < len(important_ids):
|
594 |
+
source_text = texts[important_ids[i]]
|
595 |
+
|
596 |
+
# Strip leading/trailing whitespace from source text to avoid highlighting newlines
|
597 |
+
clean_source_text = source_text.strip()
|
598 |
+
|
599 |
+
if clean_source_text: # Only add if there's actual content
|
600 |
+
# Add the source text with highlighting, then add spacing without highlighting
|
601 |
+
combined_display.append((clean_source_text, f"rank_{rank+1}"))
|
602 |
+
combined_display.append(("\n\n", None))
|
603 |
+
|
604 |
+
# Add separator (no highlighting for UI elements)
|
605 |
+
combined_display.append(("\n" + "β"*50 + "\n", None))
|
606 |
+
combined_display.append(("FULL CONTEXT WITH HIGHLIGHTS\n", None))
|
607 |
+
combined_display.append(("Scroll down to see the complete context with important segments highlighted:\n\n", None))
|
608 |
+
|
609 |
+
# Add highlighted context using in_context_highlighted_text
|
610 |
+
combined_display.extend(in_context_highlighted_text)
|
611 |
+
|
612 |
+
# Use only the ranking colors (no highlighting for UI elements)
|
613 |
+
enhanced_color_map = color_map.copy()
|
614 |
+
|
615 |
+
combined_sources_update = HighlightedTextbox(
|
616 |
+
value=combined_display, color_map=enhanced_color_map, visible=True
|
617 |
+
)
|
618 |
+
|
619 |
+
# Switch to the highlighted context tab and show results
|
620 |
+
basic_context_tabs_update = gr.update(selected=1)
|
621 |
+
basic_sources_in_context_tab_update = gr.update(visible=True)
|
622 |
+
|
623 |
+
return (
|
624 |
+
combined_sources_update,
|
625 |
+
basic_context_tabs_update,
|
626 |
+
basic_sources_in_context_tab_update,
|
627 |
+
dummy_update,
|
628 |
+
attribute_error_update,
|
629 |
+
state,
|
630 |
+
)
|
631 |
+
except Exception as e:
|
632 |
+
traceback.print_exc()
|
633 |
+
return (
|
634 |
+
gr.update(value=[("", None)], visible=False),
|
635 |
+
gr.update(selected=0),
|
636 |
+
gr.update(visible=False),
|
637 |
+
gr.update(value=""),
|
638 |
+
gr.update(value=[(f"β Error: {str(e)}", None)], visible=True),
|
639 |
+
state,
|
640 |
+
)
|
641 |
+
|
642 |
+
def basic_get_scores_and_sources(
|
643 |
+
evt: gr.SelectData,
|
644 |
+
highlighted_response: List[Dict[str, str]],
|
645 |
+
state: State,
|
646 |
+
):
|
647 |
+
|
648 |
+
# Get the selected sentence
|
649 |
+
print("highlighted_response: ", highlighted_response[evt.index])
|
650 |
+
selected_text = highlighted_response[evt.index]['token']
|
651 |
+
state.explained_response_part = selected_text
|
652 |
+
|
653 |
+
# Attribution using default configuration
|
654 |
+
#_, attr, error_msg = initialize_model_and_attr()
|
655 |
+
|
656 |
+
if attr is None:
|
657 |
+
error_text = error_msg if error_msg else "Traceback initialization failed!"
|
658 |
+
return (
|
659 |
+
gr.update(value=[("", None)], visible=False),
|
660 |
+
gr.update(selected=0),
|
661 |
+
gr.update(visible=False),
|
662 |
+
gr.update(value=""),
|
663 |
+
gr.update(value=[(f"β {error_text}", None)], visible=True),
|
664 |
+
state,
|
665 |
+
)
|
666 |
+
try:
|
667 |
+
# Validate attribution inputs
|
668 |
+
if not state.context or not state.context.strip():
|
669 |
+
return (
|
670 |
+
gr.update(value=[("", None)], visible=False),
|
671 |
+
gr.update(selected=0),
|
672 |
+
gr.update(visible=False),
|
673 |
+
gr.update(value=""),
|
674 |
+
gr.update(value=[("β No context available for traceback!", None)], visible=True),
|
675 |
+
state,
|
676 |
+
)
|
677 |
+
|
678 |
+
if not state.query or not state.query.strip():
|
679 |
+
return (
|
680 |
+
gr.update(value=[("", None)], visible=False),
|
681 |
+
gr.update(selected=0),
|
682 |
+
gr.update(visible=False),
|
683 |
+
gr.update(value=""),
|
684 |
+
gr.update(value=[("β No query available for traceback!", None)], visible=True),
|
685 |
+
state,
|
686 |
+
)
|
687 |
+
|
688 |
+
if not state.full_response or not state.full_response.strip():
|
689 |
+
return (
|
690 |
+
gr.update(value=[("", None)], visible=False),
|
691 |
+
gr.update(selected=0),
|
692 |
+
gr.update(visible=False),
|
693 |
+
gr.update(value=""),
|
694 |
+
gr.update(value=[("β No response available for traceback!", None)], visible=True),
|
695 |
+
state,
|
696 |
+
)
|
697 |
+
|
698 |
+
print(f"start traceback with explanation_level: {DEFAULT_EXPLANATION_LEVEL}")
|
699 |
+
print(f"context length: {len(state.context)}, query: {state.query[:100]}...")
|
700 |
+
print(f"response: {state.full_response[:100]}...")
|
701 |
+
print(f"selected part: {state.explained_response_part[:100]}...")
|
702 |
+
|
703 |
+
texts, important_ids, importance_scores, _, _ = attr.attribute(
|
704 |
+
state.query, [state.context], state.full_response, state.explained_response_part
|
705 |
+
)
|
706 |
+
print("end traceback")
|
707 |
+
print(f"explanation_level: {DEFAULT_EXPLANATION_LEVEL}")
|
708 |
+
print(f"texts count: {len(texts)} (how context was segmented)")
|
709 |
+
if len(texts) > 0:
|
710 |
+
print(f"sample text segments: {[text[:50] + '...' if len(text) > 50 else text for text in texts[:3]]}")
|
711 |
+
print(f"important_ids: {important_ids}")
|
712 |
+
print("importance_scores: ", importance_scores)
|
713 |
+
|
714 |
+
if not importance_scores:
|
715 |
+
return (
|
716 |
+
gr.update(value=[("", None)], visible=False),
|
717 |
+
gr.update(selected=0),
|
718 |
+
gr.update(visible=False),
|
719 |
+
gr.update(value=""),
|
720 |
+
gr.update(value=[("β No traceback scores generated! Try a different text segment.", None)], visible=True),
|
721 |
+
state,
|
722 |
+
)
|
723 |
+
|
724 |
+
state.scores = np.array(importance_scores)
|
725 |
+
|
726 |
+
# Highlighted sources with ranking-based colors
|
727 |
+
highlighted_text = []
|
728 |
+
sorted_indices = np.argsort(state.scores)[::-1]
|
729 |
+
total_sources = len(important_ids)
|
730 |
+
|
731 |
+
for rank, i in enumerate(sorted_indices):
|
732 |
+
source_text = texts[important_ids[i]]
|
733 |
+
_ = get_color_by_rank(rank + 1, total_sources)
|
734 |
+
|
735 |
+
highlighted_text.append(
|
736 |
+
(
|
737 |
+
source_text,
|
738 |
+
f"rank_{rank+1}",
|
739 |
+
)
|
740 |
+
)
|
741 |
+
|
742 |
+
# In-context highlights with ranking-based colors - show ALL text
|
743 |
+
in_context_highlighted_text = []
|
744 |
+
ranks = {important_ids[i]: rank for rank, i in enumerate(sorted_indices)}
|
745 |
+
|
746 |
+
for i in range(len(texts)):
|
747 |
+
source_text = texts[i]
|
748 |
+
|
749 |
+
# Skip or don't highlight segments that are only newlines or whitespace
|
750 |
+
if source_text.strip() == "":
|
751 |
+
# For whitespace-only segments, add them without highlighting
|
752 |
+
in_context_highlighted_text.append((source_text, None))
|
753 |
+
elif i in important_ids:
|
754 |
+
# Only highlight if the segment has actual content (not just newlines)
|
755 |
+
if source_text.strip(): # Has non-whitespace content
|
756 |
+
rank = ranks[i] + 1
|
757 |
+
|
758 |
+
# Split the segment to separate leading/trailing newlines from content
|
759 |
+
# This prevents newlines from being highlighted
|
760 |
+
leading_whitespace = ""
|
761 |
+
trailing_whitespace = ""
|
762 |
+
content = source_text
|
763 |
+
|
764 |
+
# Extract leading newlines/whitespace
|
765 |
+
while content and content[0] in ['\n', '\r', '\t', ' ']:
|
766 |
+
leading_whitespace += content[0]
|
767 |
+
content = content[1:]
|
768 |
+
|
769 |
+
# Extract trailing newlines/whitespace
|
770 |
+
while content and content[-1] in ['\n', '\r', '\t', ' ']:
|
771 |
+
trailing_whitespace = content[-1] + trailing_whitespace
|
772 |
+
content = content[:-1]
|
773 |
+
|
774 |
+
# Add the parts separately: whitespace unhighlighted, content highlighted
|
775 |
+
if leading_whitespace:
|
776 |
+
in_context_highlighted_text.append((leading_whitespace, None))
|
777 |
+
if content:
|
778 |
+
in_context_highlighted_text.append((content, f"rank_{rank}"))
|
779 |
+
if trailing_whitespace:
|
780 |
+
in_context_highlighted_text.append((trailing_whitespace, None))
|
781 |
+
else:
|
782 |
+
# Even if marked as important, don't highlight whitespace-only segments
|
783 |
+
in_context_highlighted_text.append((source_text, None))
|
784 |
+
else:
|
785 |
+
# Add unhighlighted text for non-important segments
|
786 |
+
in_context_highlighted_text.append((source_text, None))
|
787 |
+
|
788 |
+
# Enhanced color map with ranking-based colors
|
789 |
+
color_map = {}
|
790 |
+
for rank in range(len(important_ids)):
|
791 |
+
_, rgba_color = get_color_by_rank(rank + 1, total_sources)
|
792 |
+
color_map[f"rank_{rank+1}"] = rgba_color
|
793 |
+
dummy_update = gr.update(
|
794 |
+
value=f"AttnTrace_{state.response}_{state.start_index}_{state.end_index}"
|
795 |
+
)
|
796 |
+
attribute_error_update = gr.update(visible=False)
|
797 |
+
|
798 |
+
# Combine sources and highlighted context into a single display
|
799 |
+
# Sources at the top
|
800 |
+
combined_display = []
|
801 |
+
|
802 |
+
# Add sources header (no highlighting for UI elements)
|
803 |
+
combined_display.append(("βββ TRACEBACK RESULTS βββ\n", None))
|
804 |
+
combined_display.append(("These are the text segments that contribute most to the response:\n\n", None))
|
805 |
+
|
806 |
+
# Add sources using available data
|
807 |
+
for rank, i in enumerate(sorted_indices):
|
808 |
+
if i < len(important_ids):
|
809 |
+
source_text = texts[important_ids[i]]
|
810 |
+
|
811 |
+
# Strip leading/trailing whitespace from source text to avoid highlighting newlines
|
812 |
+
clean_source_text = source_text.strip()
|
813 |
+
|
814 |
+
if clean_source_text: # Only add if there's actual content
|
815 |
+
# Add the source text with highlighting, then add spacing without highlighting
|
816 |
+
combined_display.append((clean_source_text, f"rank_{rank+1}"))
|
817 |
+
combined_display.append(("\n\n", None))
|
818 |
+
|
819 |
+
# Add separator (no highlighting for UI elements)
|
820 |
+
combined_display.append(("\n" + "β"*50 + "\n", None))
|
821 |
+
combined_display.append(("FULL CONTEXT WITH HIGHLIGHTS\n", None))
|
822 |
+
combined_display.append(("Scroll down to see the complete context with important segments highlighted:\n\n", None))
|
823 |
+
|
824 |
+
# Add highlighted context using in_context_highlighted_text
|
825 |
+
combined_display.extend(in_context_highlighted_text)
|
826 |
+
|
827 |
+
# Use only the ranking colors (no highlighting for UI elements)
|
828 |
+
enhanced_color_map = color_map.copy()
|
829 |
+
|
830 |
+
combined_sources_update = HighlightedTextbox(
|
831 |
+
value=combined_display, color_map=enhanced_color_map, visible=True
|
832 |
+
)
|
833 |
+
|
834 |
+
# Switch to the highlighted context tab and show results
|
835 |
+
basic_context_tabs_update = gr.update(selected=1)
|
836 |
+
basic_sources_in_context_tab_update = gr.update(visible=True)
|
837 |
+
|
838 |
+
return (
|
839 |
+
combined_sources_update,
|
840 |
+
basic_context_tabs_update,
|
841 |
+
basic_sources_in_context_tab_update,
|
842 |
+
dummy_update,
|
843 |
+
attribute_error_update,
|
844 |
+
state,
|
845 |
+
)
|
846 |
+
except Exception as e:
|
847 |
+
traceback.print_exc()
|
848 |
+
return (
|
849 |
+
gr.update(value=[("", None)], visible=False),
|
850 |
+
gr.update(selected=0),
|
851 |
+
gr.update(visible=False),
|
852 |
+
gr.update(value=""),
|
853 |
+
gr.update(value=[(f"β Error: {str(e)}", None)], visible=True),
|
854 |
+
state,
|
855 |
+
)
|
856 |
+
|
857 |
+
def load_custom_css():
|
858 |
+
"""Load CSS from external file"""
|
859 |
+
try:
|
860 |
+
with open("assets/app_styles.css", "r") as f:
|
861 |
+
css_content = f.read()
|
862 |
+
return css_content
|
863 |
+
except FileNotFoundError:
|
864 |
+
print("Warning: CSS file not found, using minimal CSS")
|
865 |
+
return ""
|
866 |
+
except Exception as e:
|
867 |
+
print(f"Error loading CSS: {e}")
|
868 |
+
return ""
|
869 |
+
|
870 |
+
# Load CSS from external file
|
871 |
+
custom_css = load_custom_css()
|
872 |
+
theme = gr.themes.Citrus(
|
873 |
+
text_size="lg",
|
874 |
+
spacing_size="md",
|
875 |
+
)
|
876 |
+
with gr.Blocks(theme=theme, css=custom_css) as demo:
|
877 |
+
gr.Markdown(f"# {APP_TITLE}")
|
878 |
+
gr.Markdown(APP_DESCRIPTION, elem_classes="app-description")
|
879 |
+
# gr.Markdown(NEW_TEXT, elem_classes="app-description-2")
|
880 |
+
|
881 |
+
gr.Markdown("""
|
882 |
+
<div style="font-size: 18px;">
|
883 |
+
AttnTrace is an efficient context traceback method for long contexts (e.g., full papers). It is over 15Γ faster than the state-of-the-art context traceback method TracLLM. Compared to previous attention-based approaches, AttnTrace is more accurate, reliable, and memory-efficient.
|
884 |
+
""", elem_classes="feature-highlights")
|
885 |
+
# Feature highlights
|
886 |
+
gr.Markdown("""
|
887 |
+
<div style="font-size: 18px;">
|
888 |
+
AttnTrace can be used in many real-world applications, such as tracing back to:
|
889 |
+
|
890 |
+
- π prompt injection instructions that manipulate LLM-generated paper reviews.
|
891 |
+
- π» malicious comment & code hiding in the codebase that misleads the AI coding assistant.
|
892 |
+
- π€ malicious instructions that mislead the action of the LLM agent.
|
893 |
+
- π source texts in the context from an AI summary.
|
894 |
+
- π evidence that supports the LLM-generated answer for a question.
|
895 |
+
- β misinformation (corrupted knowledge) that manipulates LLM output for a question.
|
896 |
+
- And a lot more...
|
897 |
+
|
898 |
+
</div>
|
899 |
+
""", elem_classes="feature-highlights")
|
900 |
+
|
901 |
+
# Example buttons with topic-relevant images - moved here for better positioning
|
902 |
+
gr.Markdown("### π Try These Examples!", elem_classes="example-title")
|
903 |
+
with gr.Row(elem_classes=["example-button-container"]):
|
904 |
+
with gr.Column(scale=1):
|
905 |
+
example_1_btn = gr.Button(
|
906 |
+
"π Prompt Injection Attacks in AI Paper Review",
|
907 |
+
elem_classes=["example-button", "example-paper"],
|
908 |
+
elem_id="example_1_button",
|
909 |
+
scale=None,
|
910 |
+
size="sm"
|
911 |
+
)
|
912 |
+
with gr.Column(scale=1):
|
913 |
+
example_2_btn = gr.Button(
|
914 |
+
"π» Malicious Comments & Code in Codebase",
|
915 |
+
elem_classes=["example-button", "example-movie"],
|
916 |
+
elem_id="example_2_button"
|
917 |
+
)
|
918 |
+
with gr.Column(scale=1):
|
919 |
+
example_3_btn = gr.Button(
|
920 |
+
"π€ Malicious Instructions Misleading the LLM Agent",
|
921 |
+
elem_classes=["example-button", "example-code"],
|
922 |
+
elem_id="example_3_button"
|
923 |
+
)
|
924 |
+
|
925 |
+
with gr.Row(elem_classes=["example-button-container"]):
|
926 |
+
with gr.Column(scale=1):
|
927 |
+
example_4_btn = gr.Button(
|
928 |
+
"π Source Texts for an AI Summary",
|
929 |
+
elem_classes=["example-button", "example-paper-alt"],
|
930 |
+
elem_id="example_4_button"
|
931 |
+
)
|
932 |
+
with gr.Column(scale=1):
|
933 |
+
example_5_btn = gr.Button(
|
934 |
+
"π Evidence that Support Question Answering",
|
935 |
+
elem_classes=["example-button", "example-movie-alt"],
|
936 |
+
elem_id="example_5_button"
|
937 |
+
)
|
938 |
+
with gr.Column(scale=1):
|
939 |
+
example_6_btn = gr.Button(
|
940 |
+
"β Misinformation (Corrupted Knowledge) in Question Answering",
|
941 |
+
elem_classes=["example-button", "example-code-alt"],
|
942 |
+
elem_id="example_6_button"
|
943 |
+
)
|
944 |
+
|
945 |
+
state = gr.State(
|
946 |
+
value=clear_state()
|
947 |
+
)
|
948 |
+
|
949 |
+
basic_tab = gr.Tab("Demo")
|
950 |
+
with basic_tab:
|
951 |
+
# gr.Markdown("## Demo")
|
952 |
+
gr.Markdown(
|
953 |
+
"Enter your context and instruction below to try out AttnTrace! You can also click on the example buttons above to load pre-configured examples."
|
954 |
+
)
|
955 |
+
|
956 |
+
gr.Markdown(
|
957 |
+
'**Color Legend for Context Traceback (by ranking):** <span style="background-color: #FF4444; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Red</span> = 1st (most important) | <span style="background-color: #FF8C42; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Orange</span> = 2nd | <span style="background-color: #FFD93D; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Golden</span> = 3rd | <span style="background-color: #FFF280; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Yellow</span> = 4th-5th | <span style="background-color: #FFF9C4; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Light</span> = 6th+'
|
958 |
+
)
|
959 |
+
|
960 |
+
|
961 |
+
# Top section: Wide Context box with tabs
|
962 |
+
with gr.Row():
|
963 |
+
with gr.Column(scale=1):
|
964 |
+
with gr.Tabs() as basic_context_tabs:
|
965 |
+
with gr.TabItem("Context", id=0):
|
966 |
+
basic_context_box = gr.Textbox(
|
967 |
+
placeholder="Enter context...",
|
968 |
+
show_label=False,
|
969 |
+
value="",
|
970 |
+
lines=6,
|
971 |
+
max_lines=6,
|
972 |
+
elem_id="basic_context_box",
|
973 |
+
autoscroll=False,
|
974 |
+
)
|
975 |
+
with gr.TabItem("Context with highlighted traceback results", id=1, visible=True) as basic_sources_in_context_tab:
|
976 |
+
basic_sources_in_context_box = HighlightedTextbox(
|
977 |
+
value=[("Click on a sentence in the response below to see highlighted traceback results here.", None)],
|
978 |
+
show_legend_label=False,
|
979 |
+
show_label=False,
|
980 |
+
show_legend=False,
|
981 |
+
interactive=False,
|
982 |
+
elem_id="basic_sources_in_context_box",
|
983 |
+
)
|
984 |
+
|
985 |
+
# Error messages
|
986 |
+
basic_generate_error_box = HighlightedTextbox(
|
987 |
+
show_legend_label=False,
|
988 |
+
show_label=False,
|
989 |
+
show_legend=False,
|
990 |
+
visible=False,
|
991 |
+
interactive=False,
|
992 |
+
container=False,
|
993 |
+
)
|
994 |
+
|
995 |
+
# Bottom section: Left (instruction + button + response), Right (response selection)
|
996 |
+
with gr.Row(equal_height=True):
|
997 |
+
# Left: Instruction + Button + Response
|
998 |
+
with gr.Column(scale=1):
|
999 |
+
basic_query_box = gr.Textbox(
|
1000 |
+
label="Instruction",
|
1001 |
+
placeholder="Enter an instruction...",
|
1002 |
+
value="",
|
1003 |
+
lines=3,
|
1004 |
+
max_lines=3,
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
unified_response_button = gr.Button(
|
1008 |
+
"Generate/Use Response",
|
1009 |
+
variant="primary",
|
1010 |
+
size="lg"
|
1011 |
+
)
|
1012 |
+
|
1013 |
+
response_input_box = gr.Textbox(
|
1014 |
+
label="Response (Editable)",
|
1015 |
+
placeholder="Response will appear here after generation, or type your own response for traceback...",
|
1016 |
+
lines=8,
|
1017 |
+
max_lines=8,
|
1018 |
+
info="Leave empty and click button to generate from LLM, or type your own response to use for traceback"
|
1019 |
+
)
|
1020 |
+
|
1021 |
+
# Right: Response for attribution selection
|
1022 |
+
with gr.Column(scale=1):
|
1023 |
+
basic_response_box = gr.HighlightedText(
|
1024 |
+
label="Click to select text for traceback!",
|
1025 |
+
value=[("Click the 'Generate/Use Response' button on the left to see response text here for traceback analysis.", None)],
|
1026 |
+
interactive=False,
|
1027 |
+
combine_adjacent=False,
|
1028 |
+
show_label=True,
|
1029 |
+
show_legend=False,
|
1030 |
+
elem_id="basic_response_box",
|
1031 |
+
visible=True,
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
# Button for full response traceback
|
1035 |
+
full_response_traceback_button = gr.Button(
|
1036 |
+
"π Traceback Entire Response",
|
1037 |
+
variant="secondary",
|
1038 |
+
size="sm"
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
# Hidden error box and dummy elements
|
1042 |
+
basic_attribute_error_box = HighlightedTextbox(
|
1043 |
+
show_legend_label=False,
|
1044 |
+
show_label=False,
|
1045 |
+
show_legend=False,
|
1046 |
+
visible=False,
|
1047 |
+
interactive=False,
|
1048 |
+
container=False,
|
1049 |
+
)
|
1050 |
+
dummy_basic_sources_box = gr.Textbox(
|
1051 |
+
visible=False, interactive=False, container=False
|
1052 |
+
)
|
1053 |
+
|
1054 |
+
|
1055 |
+
# Only a single (AttnTrace) method and model in this simplified version
|
1056 |
+
|
1057 |
+
def basic_clear_state():
|
1058 |
+
state = clear_state()
|
1059 |
+
return (
|
1060 |
+
"", # basic_context_box
|
1061 |
+
"", # basic_query_box
|
1062 |
+
"", # response_input_box
|
1063 |
+
gr.update(value=[("Click the 'Generate/Use Response' button above to see response text here for traceback analysis.", None)]), # basic_response_box - keep visible
|
1064 |
+
gr.update(selected=0), # basic_context_tabs - switch to first tab
|
1065 |
+
state,
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
# Defining behavior of various interactions for the basic tab
|
1069 |
+
basic_tab.select(
|
1070 |
+
fn=basic_clear_state,
|
1071 |
+
inputs=[],
|
1072 |
+
outputs=[
|
1073 |
+
basic_context_box,
|
1074 |
+
basic_query_box,
|
1075 |
+
response_input_box,
|
1076 |
+
basic_response_box,
|
1077 |
+
basic_context_tabs,
|
1078 |
+
state,
|
1079 |
+
],
|
1080 |
+
)
|
1081 |
+
for component in [basic_context_box, basic_query_box]:
|
1082 |
+
component.change(
|
1083 |
+
basic_update,
|
1084 |
+
[basic_context_box, basic_query_box, state],
|
1085 |
+
[
|
1086 |
+
basic_response_box,
|
1087 |
+
basic_context_tabs,
|
1088 |
+
state,
|
1089 |
+
],
|
1090 |
+
)
|
1091 |
+
# Example button event handlers - now update both UI and state
|
1092 |
+
outputs_for_examples = [
|
1093 |
+
basic_context_box,
|
1094 |
+
basic_query_box,
|
1095 |
+
state,
|
1096 |
+
response_input_box,
|
1097 |
+
basic_response_box,
|
1098 |
+
basic_context_tabs,
|
1099 |
+
]
|
1100 |
+
example_1_btn.click(
|
1101 |
+
fn=partial(load_an_example, run_example_1),
|
1102 |
+
inputs=[state],
|
1103 |
+
outputs=outputs_for_examples
|
1104 |
+
)
|
1105 |
+
example_2_btn.click(
|
1106 |
+
fn=partial(load_an_example, run_example_2),
|
1107 |
+
inputs=[state],
|
1108 |
+
outputs=outputs_for_examples
|
1109 |
+
)
|
1110 |
+
example_3_btn.click(
|
1111 |
+
fn=partial(load_an_example, run_example_3),
|
1112 |
+
inputs=[state],
|
1113 |
+
outputs=outputs_for_examples
|
1114 |
+
)
|
1115 |
+
example_4_btn.click(
|
1116 |
+
fn=partial(load_an_example, run_example_4),
|
1117 |
+
inputs=[state],
|
1118 |
+
outputs=outputs_for_examples
|
1119 |
+
)
|
1120 |
+
example_5_btn.click(
|
1121 |
+
fn=partial(load_an_example, run_example_5),
|
1122 |
+
inputs=[state],
|
1123 |
+
outputs=outputs_for_examples
|
1124 |
+
)
|
1125 |
+
example_6_btn.click(
|
1126 |
+
fn=partial(load_an_example, run_example_6),
|
1127 |
+
inputs=[state],
|
1128 |
+
outputs=outputs_for_examples
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
unified_response_button.click(
|
1132 |
+
fn=lambda: None,
|
1133 |
+
inputs=[],
|
1134 |
+
outputs=[],
|
1135 |
+
js=get_scroll_js_code("basic_response_box"),
|
1136 |
+
)
|
1137 |
+
basic_response_box.change(
|
1138 |
+
fn=lambda: None,
|
1139 |
+
inputs=[],
|
1140 |
+
outputs=[],
|
1141 |
+
js=get_scroll_js_code("basic_sources_in_context_box"),
|
1142 |
+
)
|
1143 |
+
# Add immediate tab switch on response selection
|
1144 |
+
def immediate_tab_switch():
|
1145 |
+
return (
|
1146 |
+
gr.update(value=[("π Processing traceback... Please wait...", None)]), # Show progress message
|
1147 |
+
gr.update(selected=1), # Switch to annotation tab immediately
|
1148 |
+
)
|
1149 |
+
|
1150 |
+
basic_response_box.select(
|
1151 |
+
fn=immediate_tab_switch,
|
1152 |
+
inputs=[],
|
1153 |
+
outputs=[basic_sources_in_context_box, basic_context_tabs],
|
1154 |
+
queue=False, # Execute immediately without queue
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
basic_response_box.select(
|
1158 |
+
fn=basic_get_scores_and_sources,
|
1159 |
+
inputs=[basic_response_box, state],
|
1160 |
+
outputs=[
|
1161 |
+
basic_sources_in_context_box,
|
1162 |
+
basic_context_tabs,
|
1163 |
+
basic_sources_in_context_tab,
|
1164 |
+
dummy_basic_sources_box,
|
1165 |
+
basic_attribute_error_box,
|
1166 |
+
state,
|
1167 |
+
],
|
1168 |
+
show_progress="full",
|
1169 |
+
)
|
1170 |
+
basic_response_box.select(
|
1171 |
+
fn=basic_update_highlighted_response,
|
1172 |
+
inputs=[state],
|
1173 |
+
outputs=[basic_response_box, state],
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
# Full response traceback button
|
1177 |
+
full_response_traceback_button.click(
|
1178 |
+
fn=immediate_tab_switch,
|
1179 |
+
inputs=[],
|
1180 |
+
outputs=[basic_sources_in_context_box, basic_context_tabs],
|
1181 |
+
queue=False, # Execute immediately without queue
|
1182 |
+
)
|
1183 |
+
|
1184 |
+
full_response_traceback_button.click(
|
1185 |
+
fn=basic_get_scores_and_sources_full_response,
|
1186 |
+
inputs=[state],
|
1187 |
+
outputs=[
|
1188 |
+
basic_sources_in_context_box,
|
1189 |
+
basic_context_tabs,
|
1190 |
+
basic_sources_in_context_tab,
|
1191 |
+
dummy_basic_sources_box,
|
1192 |
+
basic_attribute_error_box,
|
1193 |
+
state,
|
1194 |
+
],
|
1195 |
+
show_progress="full",
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
dummy_basic_sources_box.change(
|
1199 |
+
fn=lambda: None,
|
1200 |
+
inputs=[],
|
1201 |
+
outputs=[],
|
1202 |
+
js=get_scroll_js_code("basic_sources_in_context_box"),
|
1203 |
+
)
|
1204 |
+
|
1205 |
+
# Unified response handler
|
1206 |
+
unified_response_button.click(
|
1207 |
+
fn=unified_response_handler,
|
1208 |
+
inputs=[response_input_box, state],
|
1209 |
+
outputs=[state, response_input_box, basic_response_box, basic_generate_error_box]
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
|
1213 |
+
# gr.Markdown(
|
1214 |
+
# "Please do not interact with elements while generation/attribution is in progress. This may cause errors. You can refresh the page if you run into issues because of this."
|
1215 |
+
# )
|
1216 |
+
|
1217 |
+
demo.launch(show_api=False, share=True)
|
1218 |
+
|