Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
dff74c4
1
Parent(s):
cb1ecf3
update
Browse files- src/models/Llama.py +38 -33
src/models/Llama.py
CHANGED
@@ -1,37 +1,40 @@
|
|
1 |
import torch
|
2 |
-
from transformers import
|
3 |
-
|
4 |
from .Model import Model
|
5 |
import os
|
6 |
import signal
|
|
|
7 |
|
8 |
def handle_timeout(sig, frame):
|
9 |
raise TimeoutError('took too long')
|
10 |
signal.signal(signal.SIGALRM, handle_timeout)
|
11 |
|
12 |
class Llama(Model):
|
13 |
-
def __init__(self, config, device
|
14 |
super().__init__(config)
|
|
|
15 |
self.max_output_tokens = int(config["params"]["max_output_tokens"])
|
16 |
-
|
17 |
api_pos = int(config["api_key_info"]["api_key_use"])
|
18 |
-
hf_token = config["api_key_info"]["api_keys"][api_pos]
|
19 |
-
|
20 |
-
|
21 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.name, use_auth_token=hf_token)
|
22 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
23 |
-
self.name,
|
24 |
-
torch_dtype=torch.bfloat16,
|
25 |
-
device_map=device,
|
26 |
-
token=hf_token
|
27 |
-
)
|
28 |
self.terminators = [
|
29 |
self.tokenizer.eos_token_id,
|
30 |
self.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
31 |
]
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def query(self, msg, max_tokens=128000):
|
|
|
35 |
messages = self.messages
|
36 |
messages[1]["content"] = msg
|
37 |
|
@@ -39,12 +42,15 @@ class Llama(Model):
|
|
39 |
messages,
|
40 |
add_generation_prompt=True,
|
41 |
return_tensors="pt",
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
try:
|
45 |
signal.alarm(60)
|
46 |
-
|
47 |
-
output_tokens = self.model.generate(
|
48 |
input_ids,
|
49 |
max_length=max_tokens,
|
50 |
attention_mask=attention_mask,
|
@@ -53,28 +59,27 @@ class Llama(Model):
|
|
53 |
do_sample=False
|
54 |
)
|
55 |
signal.alarm(0)
|
56 |
-
except TimeoutError
|
57 |
print("time out")
|
58 |
-
return
|
59 |
-
|
60 |
-
|
61 |
-
return result
|
62 |
|
63 |
-
def get_prompt_length(self,msg):
|
|
|
64 |
messages = self.messages
|
65 |
messages[1]["content"] = msg
|
66 |
input_ids = self.tokenizer.apply_chat_template(
|
67 |
messages,
|
68 |
add_generation_prompt=True,
|
69 |
-
return_tensors="pt"
|
70 |
-
|
|
|
|
|
71 |
return len(input_ids[0])
|
72 |
-
def cut_context(self,msg,max_length):
|
73 |
-
tokens = self.tokenizer.encode(msg, add_special_tokens=True)
|
74 |
|
75 |
-
|
|
|
76 |
truncated_tokens = tokens[:max_length]
|
77 |
-
|
78 |
-
# Decode the truncated tokens back to text
|
79 |
truncated_text = self.tokenizer.decode(truncated_tokens, skip_special_tokens=True)
|
80 |
-
return truncated_text
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
3 |
from .Model import Model
|
4 |
import os
|
5 |
import signal
|
6 |
+
from functools import lru_cache
|
7 |
|
8 |
def handle_timeout(sig, frame):
|
9 |
raise TimeoutError('took too long')
|
10 |
signal.signal(signal.SIGALRM, handle_timeout)
|
11 |
|
12 |
class Llama(Model):
|
13 |
+
def __init__(self, config, device="cuda:0"):
|
14 |
super().__init__(config)
|
15 |
+
self.device = device
|
16 |
self.max_output_tokens = int(config["params"]["max_output_tokens"])
|
|
|
17 |
api_pos = int(config["api_key_info"]["api_key_use"])
|
18 |
+
self.hf_token = config["api_key_info"]["api_keys"][api_pos] or os.getenv("HF_TOKEN")
|
19 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.name, use_auth_token=self.hf_token)
|
20 |
+
self._model = None # Delayed init
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
self.terminators = [
|
22 |
self.tokenizer.eos_token_id,
|
23 |
self.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
24 |
]
|
25 |
+
|
26 |
+
def _load_model_if_needed(self):
|
27 |
+
if self._model is None:
|
28 |
+
self._model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
self.name,
|
30 |
+
torch_dtype=torch.bfloat16,
|
31 |
+
device_map=self.device,
|
32 |
+
token=self.hf_token
|
33 |
+
)
|
34 |
+
return self._model
|
35 |
|
36 |
def query(self, msg, max_tokens=128000):
|
37 |
+
model = self._load_model_if_needed()
|
38 |
messages = self.messages
|
39 |
messages[1]["content"] = msg
|
40 |
|
|
|
42 |
messages,
|
43 |
add_generation_prompt=True,
|
44 |
return_tensors="pt",
|
45 |
+
padding=True,
|
46 |
+
truncation=True
|
47 |
+
).to(model.device)
|
48 |
+
|
49 |
+
attention_mask = torch.ones(input_ids.shape, device=model.device)
|
50 |
+
|
51 |
try:
|
52 |
signal.alarm(60)
|
53 |
+
output_tokens = model.generate(
|
|
|
54 |
input_ids,
|
55 |
max_length=max_tokens,
|
56 |
attention_mask=attention_mask,
|
|
|
59 |
do_sample=False
|
60 |
)
|
61 |
signal.alarm(0)
|
62 |
+
except TimeoutError:
|
63 |
print("time out")
|
64 |
+
return "time out"
|
65 |
+
|
66 |
+
return self.tokenizer.decode(output_tokens[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
|
|
67 |
|
68 |
+
def get_prompt_length(self, msg):
|
69 |
+
model = self._load_model_if_needed()
|
70 |
messages = self.messages
|
71 |
messages[1]["content"] = msg
|
72 |
input_ids = self.tokenizer.apply_chat_template(
|
73 |
messages,
|
74 |
add_generation_prompt=True,
|
75 |
+
return_tensors="pt",
|
76 |
+
padding=True,
|
77 |
+
truncation=True
|
78 |
+
).to(model.device)
|
79 |
return len(input_ids[0])
|
|
|
|
|
80 |
|
81 |
+
def cut_context(self, msg, max_length):
|
82 |
+
tokens = self.tokenizer.encode(msg, add_special_tokens=True)
|
83 |
truncated_tokens = tokens[:max_length]
|
|
|
|
|
84 |
truncated_text = self.tokenizer.decode(truncated_tokens, skip_special_tokens=True)
|
85 |
+
return truncated_text
|