Spaces:
Runtime error
Runtime error
Commit
·
b7b00e2
1
Parent(s):
cd41f5f
Add multiimage and gaussian
Browse files- app.py +171 -38
- assets/example_multi_image/character_1.png +0 -0
- assets/example_multi_image/character_2.png +0 -0
- assets/example_multi_image/character_3.png +0 -0
- assets/example_multi_image/mushroom_1.png +0 -0
- assets/example_multi_image/mushroom_2.png +0 -0
- assets/example_multi_image/mushroom_3.png +0 -0
- assets/example_multi_image/orangeguy_1.png +0 -0
- assets/example_multi_image/orangeguy_2.png +0 -0
- assets/example_multi_image/orangeguy_3.png +0 -0
- assets/example_multi_image/popmart_1.png +0 -0
- assets/example_multi_image/popmart_2.png +0 -0
- assets/example_multi_image/popmart_3.png +0 -0
- assets/example_multi_image/rabbit_1.png +0 -0
- assets/example_multi_image/rabbit_2.png +0 -0
- assets/example_multi_image/rabbit_3.png +0 -0
- assets/example_multi_image/tiger_1.png +0 -0
- assets/example_multi_image/tiger_2.png +0 -0
- assets/example_multi_image/tiger_3.png +0 -0
- assets/example_multi_image/yoimiya_1.png +0 -0
- assets/example_multi_image/yoimiya_2.png +0 -0
- assets/example_multi_image/yoimiya_3.png +0 -0
- trellis/pipelines/trellis_image_to_3d.py +93 -0
- trellis/representations/gaussian/gaussian_model.py +18 -3
- trellis/utils/postprocessing_utils.py +130 -1
app.py
CHANGED
|
@@ -9,7 +9,6 @@ from typing import *
|
|
| 9 |
import torch
|
| 10 |
import numpy as np
|
| 11 |
import imageio
|
| 12 |
-
import uuid
|
| 13 |
from easydict import EasyDict as edict
|
| 14 |
from PIL import Image
|
| 15 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
|
@@ -24,17 +23,15 @@ os.makedirs(TMP_DIR, exist_ok=True)
|
|
| 24 |
|
| 25 |
def start_session(req: gr.Request):
|
| 26 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 27 |
-
print(f'Creating user directory: {user_dir}')
|
| 28 |
os.makedirs(user_dir, exist_ok=True)
|
| 29 |
|
| 30 |
|
| 31 |
def end_session(req: gr.Request):
|
| 32 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 33 |
-
print(f'Removing user directory: {user_dir}')
|
| 34 |
shutil.rmtree(user_dir)
|
| 35 |
|
| 36 |
|
| 37 |
-
def preprocess_image(image: Image.Image) ->
|
| 38 |
"""
|
| 39 |
Preprocess the input image.
|
| 40 |
|
|
@@ -42,14 +39,28 @@ def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
|
| 42 |
image (Image.Image): The input image.
|
| 43 |
|
| 44 |
Returns:
|
| 45 |
-
str: uuid of the trial.
|
| 46 |
Image.Image: The preprocessed image.
|
| 47 |
"""
|
| 48 |
processed_image = pipeline.preprocess_image(image)
|
| 49 |
return processed_image
|
| 50 |
|
| 51 |
|
| 52 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
return {
|
| 54 |
'gaussian': {
|
| 55 |
**gs.init_params,
|
|
@@ -63,7 +74,6 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
|
| 63 |
'vertices': mesh.vertices.cpu().numpy(),
|
| 64 |
'faces': mesh.faces.cpu().numpy(),
|
| 65 |
},
|
| 66 |
-
'trial_id': trial_id,
|
| 67 |
}
|
| 68 |
|
| 69 |
|
|
@@ -87,7 +97,7 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
| 87 |
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
| 88 |
)
|
| 89 |
|
| 90 |
-
return gs, mesh
|
| 91 |
|
| 92 |
|
| 93 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
@@ -100,11 +110,14 @@ def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
| 100 |
@spaces.GPU
|
| 101 |
def image_to_3d(
|
| 102 |
image: Image.Image,
|
|
|
|
|
|
|
| 103 |
seed: int,
|
| 104 |
ss_guidance_strength: float,
|
| 105 |
ss_sampling_steps: int,
|
| 106 |
slat_guidance_strength: float,
|
| 107 |
slat_sampling_steps: int,
|
|
|
|
| 108 |
req: gr.Request,
|
| 109 |
) -> Tuple[dict, str]:
|
| 110 |
"""
|
|
@@ -112,43 +125,62 @@ def image_to_3d(
|
|
| 112 |
|
| 113 |
Args:
|
| 114 |
image (Image.Image): The input image.
|
|
|
|
|
|
|
| 115 |
seed (int): The random seed.
|
| 116 |
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
| 117 |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
| 118 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
| 119 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
|
|
|
| 120 |
|
| 121 |
Returns:
|
| 122 |
dict: The information of the generated 3D model.
|
| 123 |
str: The path to the video of the 3D model.
|
| 124 |
"""
|
| 125 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 141 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 142 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 143 |
-
|
| 144 |
-
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
|
| 145 |
imageio.mimsave(video_path, video, fps=15)
|
| 146 |
-
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]
|
| 147 |
torch.cuda.empty_cache()
|
| 148 |
return state, video_path
|
| 149 |
|
| 150 |
|
| 151 |
-
@spaces.GPU
|
| 152 |
def extract_glb(
|
| 153 |
state: dict,
|
| 154 |
mesh_simplify: float,
|
|
@@ -167,24 +199,83 @@ def extract_glb(
|
|
| 167 |
str: The path to the extracted GLB file.
|
| 168 |
"""
|
| 169 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 170 |
-
gs, mesh
|
| 171 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 172 |
-
glb_path = os.path.join(user_dir,
|
| 173 |
glb.export(glb_path)
|
| 174 |
torch.cuda.empty_cache()
|
| 175 |
return glb_path, glb_path
|
| 176 |
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 179 |
gr.Markdown("""
|
| 180 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 181 |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
| 182 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
|
|
|
|
|
|
| 183 |
""")
|
| 184 |
|
| 185 |
with gr.Row():
|
| 186 |
with gr.Column():
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
with gr.Accordion(label="Generation Settings", open=False):
|
| 190 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
|
@@ -197,6 +288,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 197 |
with gr.Row():
|
| 198 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 199 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
|
|
|
| 200 |
|
| 201 |
generate_btn = gr.Button("Generate")
|
| 202 |
|
|
@@ -204,17 +296,26 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 204 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
| 205 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 206 |
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
with gr.Column():
|
| 210 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
| 211 |
-
model_output = LitModel3D(label="Extracted GLB", exposure=
|
| 212 |
-
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
output_buf = gr.State()
|
| 215 |
|
| 216 |
# Example images at the bottom of the page
|
| 217 |
-
with gr.Row():
|
| 218 |
examples = gr.Examples(
|
| 219 |
examples=[
|
| 220 |
f'assets/example_image/{image}'
|
|
@@ -226,16 +327,39 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 226 |
run_on_click=True,
|
| 227 |
examples_per_page=64,
|
| 228 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
# Handlers
|
| 231 |
demo.load(start_session)
|
| 232 |
demo.unload(end_session)
|
| 233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
image_prompt.upload(
|
| 235 |
preprocess_image,
|
| 236 |
inputs=[image_prompt],
|
| 237 |
outputs=[image_prompt],
|
| 238 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
generate_btn.click(
|
| 241 |
get_seed,
|
|
@@ -243,16 +367,16 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 243 |
outputs=[seed],
|
| 244 |
).then(
|
| 245 |
image_to_3d,
|
| 246 |
-
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
| 247 |
outputs=[output_buf, video_output],
|
| 248 |
).then(
|
| 249 |
-
lambda: gr.Button(interactive=True),
|
| 250 |
-
outputs=[extract_glb_btn],
|
| 251 |
)
|
| 252 |
|
| 253 |
video_output.clear(
|
| 254 |
-
lambda: gr.Button(interactive=False),
|
| 255 |
-
outputs=[extract_glb_btn],
|
| 256 |
)
|
| 257 |
|
| 258 |
extract_glb_btn.click(
|
|
@@ -263,6 +387,15 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 263 |
lambda: gr.Button(interactive=True),
|
| 264 |
outputs=[download_glb],
|
| 265 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
model_output.clear(
|
| 268 |
lambda: gr.Button(interactive=False),
|
|
|
|
| 9 |
import torch
|
| 10 |
import numpy as np
|
| 11 |
import imageio
|
|
|
|
| 12 |
from easydict import EasyDict as edict
|
| 13 |
from PIL import Image
|
| 14 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
|
|
|
| 23 |
|
| 24 |
def start_session(req: gr.Request):
|
| 25 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
| 26 |
os.makedirs(user_dir, exist_ok=True)
|
| 27 |
|
| 28 |
|
| 29 |
def end_session(req: gr.Request):
|
| 30 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
| 31 |
shutil.rmtree(user_dir)
|
| 32 |
|
| 33 |
|
| 34 |
+
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 35 |
"""
|
| 36 |
Preprocess the input image.
|
| 37 |
|
|
|
|
| 39 |
image (Image.Image): The input image.
|
| 40 |
|
| 41 |
Returns:
|
|
|
|
| 42 |
Image.Image: The preprocessed image.
|
| 43 |
"""
|
| 44 |
processed_image = pipeline.preprocess_image(image)
|
| 45 |
return processed_image
|
| 46 |
|
| 47 |
|
| 48 |
+
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
| 49 |
+
"""
|
| 50 |
+
Preprocess a list of input images.
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
images (List[Tuple[Image.Image, str]]): The input images.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
List[Image.Image]: The preprocessed images.
|
| 57 |
+
"""
|
| 58 |
+
images = [image[0] for image in images]
|
| 59 |
+
processed_images = [pipeline.preprocess_image(image) for image in images]
|
| 60 |
+
return processed_images
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
| 64 |
return {
|
| 65 |
'gaussian': {
|
| 66 |
**gs.init_params,
|
|
|
|
| 74 |
'vertices': mesh.vertices.cpu().numpy(),
|
| 75 |
'faces': mesh.faces.cpu().numpy(),
|
| 76 |
},
|
|
|
|
| 77 |
}
|
| 78 |
|
| 79 |
|
|
|
|
| 97 |
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
| 98 |
)
|
| 99 |
|
| 100 |
+
return gs, mesh
|
| 101 |
|
| 102 |
|
| 103 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
|
|
| 110 |
@spaces.GPU
|
| 111 |
def image_to_3d(
|
| 112 |
image: Image.Image,
|
| 113 |
+
multiimages: List[Tuple[Image.Image, str]],
|
| 114 |
+
is_multiimage: bool,
|
| 115 |
seed: int,
|
| 116 |
ss_guidance_strength: float,
|
| 117 |
ss_sampling_steps: int,
|
| 118 |
slat_guidance_strength: float,
|
| 119 |
slat_sampling_steps: int,
|
| 120 |
+
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
| 121 |
req: gr.Request,
|
| 122 |
) -> Tuple[dict, str]:
|
| 123 |
"""
|
|
|
|
| 125 |
|
| 126 |
Args:
|
| 127 |
image (Image.Image): The input image.
|
| 128 |
+
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
|
| 129 |
+
is_multiimage (bool): Whether is in multi-image mode.
|
| 130 |
seed (int): The random seed.
|
| 131 |
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
| 132 |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
| 133 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
| 134 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
| 135 |
+
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
| 136 |
|
| 137 |
Returns:
|
| 138 |
dict: The information of the generated 3D model.
|
| 139 |
str: The path to the video of the 3D model.
|
| 140 |
"""
|
| 141 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 142 |
+
if not is_multiimage:
|
| 143 |
+
outputs = pipeline.run(
|
| 144 |
+
image,
|
| 145 |
+
seed=seed,
|
| 146 |
+
formats=["gaussian", "mesh"],
|
| 147 |
+
preprocess_image=False,
|
| 148 |
+
sparse_structure_sampler_params={
|
| 149 |
+
"steps": ss_sampling_steps,
|
| 150 |
+
"cfg_strength": ss_guidance_strength,
|
| 151 |
+
},
|
| 152 |
+
slat_sampler_params={
|
| 153 |
+
"steps": slat_sampling_steps,
|
| 154 |
+
"cfg_strength": slat_guidance_strength,
|
| 155 |
+
},
|
| 156 |
+
)
|
| 157 |
+
else:
|
| 158 |
+
outputs = pipeline.run_multi_image(
|
| 159 |
+
[image[0] for image in multiimages],
|
| 160 |
+
seed=seed,
|
| 161 |
+
formats=["gaussian", "mesh"],
|
| 162 |
+
preprocess_image=False,
|
| 163 |
+
sparse_structure_sampler_params={
|
| 164 |
+
"steps": ss_sampling_steps,
|
| 165 |
+
"cfg_strength": ss_guidance_strength,
|
| 166 |
+
},
|
| 167 |
+
slat_sampler_params={
|
| 168 |
+
"steps": slat_sampling_steps,
|
| 169 |
+
"cfg_strength": slat_guidance_strength,
|
| 170 |
+
},
|
| 171 |
+
mode=multiimage_algo,
|
| 172 |
+
)
|
| 173 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 174 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 175 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 176 |
+
video_path = os.path.join(user_dir, 'sample.mp4')
|
|
|
|
| 177 |
imageio.mimsave(video_path, video, fps=15)
|
| 178 |
+
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
| 179 |
torch.cuda.empty_cache()
|
| 180 |
return state, video_path
|
| 181 |
|
| 182 |
|
| 183 |
+
@spaces.GPU(duration=90)
|
| 184 |
def extract_glb(
|
| 185 |
state: dict,
|
| 186 |
mesh_simplify: float,
|
|
|
|
| 199 |
str: The path to the extracted GLB file.
|
| 200 |
"""
|
| 201 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 202 |
+
gs, mesh = unpack_state(state)
|
| 203 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 204 |
+
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 205 |
glb.export(glb_path)
|
| 206 |
torch.cuda.empty_cache()
|
| 207 |
return glb_path, glb_path
|
| 208 |
|
| 209 |
|
| 210 |
+
@spaces.GPU
|
| 211 |
+
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 212 |
+
"""
|
| 213 |
+
Extract a Gaussian file from the 3D model.
|
| 214 |
+
|
| 215 |
+
Args:
|
| 216 |
+
state (dict): The state of the generated 3D model.
|
| 217 |
+
|
| 218 |
+
Returns:
|
| 219 |
+
str: The path to the extracted Gaussian file.
|
| 220 |
+
"""
|
| 221 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 222 |
+
gs, _ = unpack_state(state)
|
| 223 |
+
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
| 224 |
+
gs.save_ply(gaussian_path)
|
| 225 |
+
torch.cuda.empty_cache()
|
| 226 |
+
return gaussian_path, gaussian_path
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def prepare_multi_example() -> List[Image.Image]:
|
| 230 |
+
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
|
| 231 |
+
images = []
|
| 232 |
+
for case in multi_case:
|
| 233 |
+
_images = []
|
| 234 |
+
for i in range(1, 4):
|
| 235 |
+
img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
|
| 236 |
+
W, H = img.size
|
| 237 |
+
img = img.resize((int(W / H * 512), 512))
|
| 238 |
+
_images.append(np.array(img))
|
| 239 |
+
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
|
| 240 |
+
return images
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def split_image(image: Image.Image) -> List[Image.Image]:
|
| 244 |
+
"""
|
| 245 |
+
Split an image into multiple views.
|
| 246 |
+
"""
|
| 247 |
+
image = np.array(image)
|
| 248 |
+
alpha = image[..., 3]
|
| 249 |
+
alpha = np.any(alpha>0, axis=0)
|
| 250 |
+
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
| 251 |
+
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
| 252 |
+
images = []
|
| 253 |
+
for s, e in zip(start_pos, end_pos):
|
| 254 |
+
images.append(Image.fromarray(image[:, s:e+1]))
|
| 255 |
+
return [preprocess_image(image) for image in images]
|
| 256 |
+
|
| 257 |
+
|
| 258 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 259 |
gr.Markdown("""
|
| 260 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 261 |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
| 262 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
| 263 |
+
|
| 264 |
+
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
| 265 |
""")
|
| 266 |
|
| 267 |
with gr.Row():
|
| 268 |
with gr.Column():
|
| 269 |
+
with gr.Tabs() as input_tabs:
|
| 270 |
+
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
| 271 |
+
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
| 272 |
+
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
| 273 |
+
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
| 274 |
+
gr.Markdown("""
|
| 275 |
+
Input different views of the object in separate images.
|
| 276 |
+
|
| 277 |
+
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
| 278 |
+
""")
|
| 279 |
|
| 280 |
with gr.Accordion(label="Generation Settings", open=False):
|
| 281 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
|
|
|
| 288 |
with gr.Row():
|
| 289 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 290 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 291 |
+
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
| 292 |
|
| 293 |
generate_btn = gr.Button("Generate")
|
| 294 |
|
|
|
|
| 296 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
| 297 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 298 |
|
| 299 |
+
with gr.Row():
|
| 300 |
+
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
| 301 |
+
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
| 302 |
+
gr.Markdown("""
|
| 303 |
+
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
| 304 |
+
""")
|
| 305 |
|
| 306 |
with gr.Column():
|
| 307 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
| 308 |
+
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
|
|
|
|
| 309 |
|
| 310 |
+
with gr.Row():
|
| 311 |
+
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 312 |
+
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
| 313 |
+
|
| 314 |
+
is_multiimage = gr.State(False)
|
| 315 |
output_buf = gr.State()
|
| 316 |
|
| 317 |
# Example images at the bottom of the page
|
| 318 |
+
with gr.Row() as single_image_example:
|
| 319 |
examples = gr.Examples(
|
| 320 |
examples=[
|
| 321 |
f'assets/example_image/{image}'
|
|
|
|
| 327 |
run_on_click=True,
|
| 328 |
examples_per_page=64,
|
| 329 |
)
|
| 330 |
+
with gr.Row(visible=False) as multiimage_example:
|
| 331 |
+
examples_multi = gr.Examples(
|
| 332 |
+
examples=prepare_multi_example(),
|
| 333 |
+
inputs=[image_prompt],
|
| 334 |
+
fn=split_image,
|
| 335 |
+
outputs=[multiimage_prompt],
|
| 336 |
+
run_on_click=True,
|
| 337 |
+
examples_per_page=8,
|
| 338 |
+
)
|
| 339 |
|
| 340 |
# Handlers
|
| 341 |
demo.load(start_session)
|
| 342 |
demo.unload(end_session)
|
| 343 |
|
| 344 |
+
single_image_input_tab.select(
|
| 345 |
+
lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
|
| 346 |
+
outputs=[is_multiimage, single_image_example, multiimage_example]
|
| 347 |
+
)
|
| 348 |
+
multiimage_input_tab.select(
|
| 349 |
+
lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
|
| 350 |
+
outputs=[is_multiimage, single_image_example, multiimage_example]
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
image_prompt.upload(
|
| 354 |
preprocess_image,
|
| 355 |
inputs=[image_prompt],
|
| 356 |
outputs=[image_prompt],
|
| 357 |
)
|
| 358 |
+
multiimage_prompt.upload(
|
| 359 |
+
preprocess_images,
|
| 360 |
+
inputs=[multiimage_prompt],
|
| 361 |
+
outputs=[multiimage_prompt],
|
| 362 |
+
)
|
| 363 |
|
| 364 |
generate_btn.click(
|
| 365 |
get_seed,
|
|
|
|
| 367 |
outputs=[seed],
|
| 368 |
).then(
|
| 369 |
image_to_3d,
|
| 370 |
+
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
| 371 |
outputs=[output_buf, video_output],
|
| 372 |
).then(
|
| 373 |
+
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
| 374 |
+
outputs=[extract_glb_btn, extract_gs_btn],
|
| 375 |
)
|
| 376 |
|
| 377 |
video_output.clear(
|
| 378 |
+
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
| 379 |
+
outputs=[extract_glb_btn, extract_gs_btn],
|
| 380 |
)
|
| 381 |
|
| 382 |
extract_glb_btn.click(
|
|
|
|
| 387 |
lambda: gr.Button(interactive=True),
|
| 388 |
outputs=[download_glb],
|
| 389 |
)
|
| 390 |
+
|
| 391 |
+
extract_gs_btn.click(
|
| 392 |
+
extract_gaussian,
|
| 393 |
+
inputs=[output_buf],
|
| 394 |
+
outputs=[model_output, download_gs],
|
| 395 |
+
).then(
|
| 396 |
+
lambda: gr.Button(interactive=True),
|
| 397 |
+
outputs=[download_gs],
|
| 398 |
+
)
|
| 399 |
|
| 400 |
model_output.clear(
|
| 401 |
lambda: gr.Button(interactive=False),
|
assets/example_multi_image/character_1.png
ADDED
|
assets/example_multi_image/character_2.png
ADDED
|
assets/example_multi_image/character_3.png
ADDED
|
assets/example_multi_image/mushroom_1.png
ADDED
|
assets/example_multi_image/mushroom_2.png
ADDED
|
assets/example_multi_image/mushroom_3.png
ADDED
|
assets/example_multi_image/orangeguy_1.png
ADDED
|
assets/example_multi_image/orangeguy_2.png
ADDED
|
assets/example_multi_image/orangeguy_3.png
ADDED
|
assets/example_multi_image/popmart_1.png
ADDED
|
assets/example_multi_image/popmart_2.png
ADDED
|
assets/example_multi_image/popmart_3.png
ADDED
|
assets/example_multi_image/rabbit_1.png
ADDED
|
assets/example_multi_image/rabbit_2.png
ADDED
|
assets/example_multi_image/rabbit_3.png
ADDED
|
assets/example_multi_image/tiger_1.png
ADDED
|
assets/example_multi_image/tiger_2.png
ADDED
|
assets/example_multi_image/tiger_3.png
ADDED
|
assets/example_multi_image/yoimiya_1.png
ADDED
|
assets/example_multi_image/yoimiya_2.png
ADDED
|
assets/example_multi_image/yoimiya_3.png
ADDED
|
trellis/pipelines/trellis_image_to_3d.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
from typing import *
|
|
|
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
import torch.nn.functional as F
|
|
@@ -281,3 +282,95 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 281 |
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
|
| 282 |
slat = self.sample_slat(cond, coords, slat_sampler_params)
|
| 283 |
return self.decode_slat(slat, formats)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import *
|
| 2 |
+
from contextlib import contextmanager
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import torch.nn.functional as F
|
|
|
|
| 282 |
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
|
| 283 |
slat = self.sample_slat(cond, coords, slat_sampler_params)
|
| 284 |
return self.decode_slat(slat, formats)
|
| 285 |
+
|
| 286 |
+
@contextmanager
|
| 287 |
+
def inject_sampler_multi_image(
|
| 288 |
+
self,
|
| 289 |
+
sampler_name: str,
|
| 290 |
+
num_images: int,
|
| 291 |
+
num_steps: int,
|
| 292 |
+
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
|
| 293 |
+
):
|
| 294 |
+
"""
|
| 295 |
+
Inject a sampler with multiple images as condition.
|
| 296 |
+
|
| 297 |
+
Args:
|
| 298 |
+
sampler_name (str): The name of the sampler to inject.
|
| 299 |
+
num_images (int): The number of images to condition on.
|
| 300 |
+
num_steps (int): The number of steps to run the sampler for.
|
| 301 |
+
"""
|
| 302 |
+
sampler = getattr(self, sampler_name)
|
| 303 |
+
setattr(sampler, f'_old_inference_model', sampler._inference_model)
|
| 304 |
+
|
| 305 |
+
if mode == 'stochastic':
|
| 306 |
+
if num_images > num_steps:
|
| 307 |
+
print(f"\033[93mWarning: number of conditioning images is greater than number of steps for {sampler_name}. "
|
| 308 |
+
"This may lead to performance degradation.\033[0m")
|
| 309 |
+
|
| 310 |
+
cond_indices = (np.arange(num_steps) % num_images).tolist()
|
| 311 |
+
def _new_inference_model(self, model, x_t, t, cond, **kwargs):
|
| 312 |
+
cond_idx = cond_indices.pop(0)
|
| 313 |
+
cond_i = cond[cond_idx:cond_idx+1]
|
| 314 |
+
return self._old_inference_model(model, x_t, t, cond=cond_i, **kwargs)
|
| 315 |
+
|
| 316 |
+
elif mode =='multidiffusion':
|
| 317 |
+
from .samplers import FlowEulerSampler
|
| 318 |
+
def _new_inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, cfg_interval, **kwargs):
|
| 319 |
+
if cfg_interval[0] <= t <= cfg_interval[1]:
|
| 320 |
+
preds = []
|
| 321 |
+
for i in range(len(cond)):
|
| 322 |
+
preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
|
| 323 |
+
pred = sum(preds) / len(preds)
|
| 324 |
+
neg_pred = FlowEulerSampler._inference_model(self, model, x_t, t, neg_cond, **kwargs)
|
| 325 |
+
return (1 + cfg_strength) * pred - cfg_strength * neg_pred
|
| 326 |
+
else:
|
| 327 |
+
preds = []
|
| 328 |
+
for i in range(len(cond)):
|
| 329 |
+
preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
|
| 330 |
+
pred = sum(preds) / len(preds)
|
| 331 |
+
return pred
|
| 332 |
+
|
| 333 |
+
else:
|
| 334 |
+
raise ValueError(f"Unsupported mode: {mode}")
|
| 335 |
+
|
| 336 |
+
sampler._inference_model = _new_inference_model.__get__(sampler, type(sampler))
|
| 337 |
+
|
| 338 |
+
yield
|
| 339 |
+
|
| 340 |
+
sampler._inference_model = sampler._old_inference_model
|
| 341 |
+
delattr(sampler, f'_old_inference_model')
|
| 342 |
+
|
| 343 |
+
@torch.no_grad()
|
| 344 |
+
def run_multi_image(
|
| 345 |
+
self,
|
| 346 |
+
images: List[Image.Image],
|
| 347 |
+
num_samples: int = 1,
|
| 348 |
+
seed: int = 42,
|
| 349 |
+
sparse_structure_sampler_params: dict = {},
|
| 350 |
+
slat_sampler_params: dict = {},
|
| 351 |
+
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
|
| 352 |
+
preprocess_image: bool = True,
|
| 353 |
+
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
|
| 354 |
+
) -> dict:
|
| 355 |
+
"""
|
| 356 |
+
Run the pipeline with multiple images as condition
|
| 357 |
+
|
| 358 |
+
Args:
|
| 359 |
+
images (List[Image.Image]): The multi-view images of the assets
|
| 360 |
+
num_samples (int): The number of samples to generate.
|
| 361 |
+
sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
|
| 362 |
+
slat_sampler_params (dict): Additional parameters for the structured latent sampler.
|
| 363 |
+
preprocess_image (bool): Whether to preprocess the image.
|
| 364 |
+
"""
|
| 365 |
+
if preprocess_image:
|
| 366 |
+
images = [self.preprocess_image(image) for image in images]
|
| 367 |
+
cond = self.get_cond(images)
|
| 368 |
+
cond['neg_cond'] = cond['neg_cond'][:1]
|
| 369 |
+
torch.manual_seed(seed)
|
| 370 |
+
ss_steps = {**self.sparse_structure_sampler_params, **sparse_structure_sampler_params}.get('steps')
|
| 371 |
+
with self.inject_sampler_multi_image('sparse_structure_sampler', len(images), ss_steps, mode=mode):
|
| 372 |
+
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
|
| 373 |
+
slat_steps = {**self.slat_sampler_params, **slat_sampler_params}.get('steps')
|
| 374 |
+
with self.inject_sampler_multi_image('slat_sampler', len(images), slat_steps, mode=mode):
|
| 375 |
+
slat = self.sample_slat(cond, coords, slat_sampler_params)
|
| 376 |
+
return self.decode_slat(slat, formats)
|
trellis/representations/gaussian/gaussian_model.py
CHANGED
|
@@ -2,6 +2,7 @@ import torch
|
|
| 2 |
import numpy as np
|
| 3 |
from plyfile import PlyData, PlyElement
|
| 4 |
from .general_utils import inverse_sigmoid, strip_symmetric, build_scaling_rotation
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class Gaussian:
|
|
@@ -120,14 +121,21 @@ class Gaussian:
|
|
| 120 |
for i in range(self._rotation.shape[1]):
|
| 121 |
l.append('rot_{}'.format(i))
|
| 122 |
return l
|
| 123 |
-
|
| 124 |
-
def save_ply(self, path):
|
| 125 |
xyz = self.get_xyz.detach().cpu().numpy()
|
| 126 |
normals = np.zeros_like(xyz)
|
| 127 |
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
| 128 |
opacities = inverse_sigmoid(self.get_opacity).detach().cpu().numpy()
|
| 129 |
scale = torch.log(self.get_scaling).detach().cpu().numpy()
|
| 130 |
rotation = (self._rotation + self.rots_bias[None, :]).detach().cpu().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
|
| 133 |
|
|
@@ -137,7 +145,7 @@ class Gaussian:
|
|
| 137 |
el = PlyElement.describe(elements, 'vertex')
|
| 138 |
PlyData([el]).write(path)
|
| 139 |
|
| 140 |
-
def load_ply(self, path):
|
| 141 |
plydata = PlyData.read(path)
|
| 142 |
|
| 143 |
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
|
|
@@ -172,6 +180,13 @@ class Gaussian:
|
|
| 172 |
for idx, attr_name in enumerate(rot_names):
|
| 173 |
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
# convert to actual gaussian attributes
|
| 176 |
xyz = torch.tensor(xyz, dtype=torch.float, device=self.device)
|
| 177 |
features_dc = torch.tensor(features_dc, dtype=torch.float, device=self.device).transpose(1, 2).contiguous()
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
from plyfile import PlyData, PlyElement
|
| 4 |
from .general_utils import inverse_sigmoid, strip_symmetric, build_scaling_rotation
|
| 5 |
+
import utils3d
|
| 6 |
|
| 7 |
|
| 8 |
class Gaussian:
|
|
|
|
| 121 |
for i in range(self._rotation.shape[1]):
|
| 122 |
l.append('rot_{}'.format(i))
|
| 123 |
return l
|
| 124 |
+
|
| 125 |
+
def save_ply(self, path, transform=[[1, 0, 0], [0, 0, -1], [0, 1, 0]]):
|
| 126 |
xyz = self.get_xyz.detach().cpu().numpy()
|
| 127 |
normals = np.zeros_like(xyz)
|
| 128 |
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
| 129 |
opacities = inverse_sigmoid(self.get_opacity).detach().cpu().numpy()
|
| 130 |
scale = torch.log(self.get_scaling).detach().cpu().numpy()
|
| 131 |
rotation = (self._rotation + self.rots_bias[None, :]).detach().cpu().numpy()
|
| 132 |
+
|
| 133 |
+
if transform is not None:
|
| 134 |
+
transform = np.array(transform)
|
| 135 |
+
xyz = np.matmul(xyz, transform.T)
|
| 136 |
+
rotation = utils3d.numpy.quaternion_to_matrix(rotation)
|
| 137 |
+
rotation = np.matmul(transform, rotation)
|
| 138 |
+
rotation = utils3d.numpy.matrix_to_quaternion(rotation)
|
| 139 |
|
| 140 |
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
|
| 141 |
|
|
|
|
| 145 |
el = PlyElement.describe(elements, 'vertex')
|
| 146 |
PlyData([el]).write(path)
|
| 147 |
|
| 148 |
+
def load_ply(self, path, transform=[[1, 0, 0], [0, 0, -1], [0, 1, 0]]):
|
| 149 |
plydata = PlyData.read(path)
|
| 150 |
|
| 151 |
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
|
|
|
|
| 180 |
for idx, attr_name in enumerate(rot_names):
|
| 181 |
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
| 182 |
|
| 183 |
+
if transform is not None:
|
| 184 |
+
transform = np.array(transform)
|
| 185 |
+
xyz = np.matmul(xyz, transform)
|
| 186 |
+
rotation = utils3d.numpy.quaternion_to_matrix(rotation)
|
| 187 |
+
rotation = np.matmul(rotation, transform)
|
| 188 |
+
rotation = utils3d.numpy.matrix_to_quaternion(rotation)
|
| 189 |
+
|
| 190 |
# convert to actual gaussian attributes
|
| 191 |
xyz = torch.tensor(xyz, dtype=torch.float, device=self.device)
|
| 192 |
features_dc = torch.tensor(features_dc, dtype=torch.float, device=self.device).transpose(1, 2).contiguous()
|
trellis/utils/postprocessing_utils.py
CHANGED
|
@@ -14,6 +14,7 @@ import cv2
|
|
| 14 |
from PIL import Image
|
| 15 |
from .random_utils import sphere_hammersley_sequence
|
| 16 |
from .render_utils import render_multiview
|
|
|
|
| 17 |
from ..representations import Strivec, Gaussian, MeshExtractResult
|
| 18 |
|
| 19 |
|
|
@@ -454,5 +455,133 @@ def to_glb(
|
|
| 454 |
|
| 455 |
# rotate mesh (from z-up to y-up)
|
| 456 |
vertices = vertices @ np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])
|
| 457 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
return mesh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
from PIL import Image
|
| 15 |
from .random_utils import sphere_hammersley_sequence
|
| 16 |
from .render_utils import render_multiview
|
| 17 |
+
from ..renderers import GaussianRenderer
|
| 18 |
from ..representations import Strivec, Gaussian, MeshExtractResult
|
| 19 |
|
| 20 |
|
|
|
|
| 455 |
|
| 456 |
# rotate mesh (from z-up to y-up)
|
| 457 |
vertices = vertices @ np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])
|
| 458 |
+
material = trimesh.visual.material.PBRMaterial(
|
| 459 |
+
roughnessFactor=1.0,
|
| 460 |
+
baseColorTexture=texture,
|
| 461 |
+
baseColorFactor=np.array([255, 255, 255, 255], dtype=np.uint8)
|
| 462 |
+
)
|
| 463 |
+
mesh = trimesh.Trimesh(vertices, faces, visual=trimesh.visual.TextureVisuals(uv=uvs, material=material))
|
| 464 |
return mesh
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
def simplify_gs(
|
| 468 |
+
gs: Gaussian,
|
| 469 |
+
simplify: float = 0.95,
|
| 470 |
+
verbose: bool = True,
|
| 471 |
+
):
|
| 472 |
+
"""
|
| 473 |
+
Simplify 3D Gaussians
|
| 474 |
+
NOTE: this function is not used in the current implementation for the unsatisfactory performance.
|
| 475 |
+
|
| 476 |
+
Args:
|
| 477 |
+
gs (Gaussian): 3D Gaussian.
|
| 478 |
+
simplify (float): Ratio of Gaussians to remove in simplification.
|
| 479 |
+
"""
|
| 480 |
+
if simplify <= 0:
|
| 481 |
+
return gs
|
| 482 |
+
|
| 483 |
+
# simplify
|
| 484 |
+
observations, extrinsics, intrinsics = render_multiview(gs, resolution=1024, nviews=100)
|
| 485 |
+
observations = [torch.tensor(obs / 255.0).float().cuda().permute(2, 0, 1) for obs in observations]
|
| 486 |
+
|
| 487 |
+
# Following https://arxiv.org/pdf/2411.06019
|
| 488 |
+
renderer = GaussianRenderer({
|
| 489 |
+
"resolution": 1024,
|
| 490 |
+
"near": 0.8,
|
| 491 |
+
"far": 1.6,
|
| 492 |
+
"ssaa": 1,
|
| 493 |
+
"bg_color": (0,0,0),
|
| 494 |
+
})
|
| 495 |
+
new_gs = Gaussian(**gs.init_params)
|
| 496 |
+
new_gs._features_dc = gs._features_dc.clone()
|
| 497 |
+
new_gs._features_rest = gs._features_rest.clone() if gs._features_rest is not None else None
|
| 498 |
+
new_gs._opacity = torch.nn.Parameter(gs._opacity.clone())
|
| 499 |
+
new_gs._rotation = torch.nn.Parameter(gs._rotation.clone())
|
| 500 |
+
new_gs._scaling = torch.nn.Parameter(gs._scaling.clone())
|
| 501 |
+
new_gs._xyz = torch.nn.Parameter(gs._xyz.clone())
|
| 502 |
+
|
| 503 |
+
start_lr = [1e-4, 1e-3, 5e-3, 0.025]
|
| 504 |
+
end_lr = [1e-6, 1e-5, 5e-5, 0.00025]
|
| 505 |
+
optimizer = torch.optim.Adam([
|
| 506 |
+
{"params": new_gs._xyz, "lr": start_lr[0]},
|
| 507 |
+
{"params": new_gs._rotation, "lr": start_lr[1]},
|
| 508 |
+
{"params": new_gs._scaling, "lr": start_lr[2]},
|
| 509 |
+
{"params": new_gs._opacity, "lr": start_lr[3]},
|
| 510 |
+
], lr=start_lr[0])
|
| 511 |
+
|
| 512 |
+
def exp_anealing(optimizer, step, total_steps, start_lr, end_lr):
|
| 513 |
+
return start_lr * (end_lr / start_lr) ** (step / total_steps)
|
| 514 |
+
|
| 515 |
+
def cosine_anealing(optimizer, step, total_steps, start_lr, end_lr):
|
| 516 |
+
return end_lr + 0.5 * (start_lr - end_lr) * (1 + np.cos(np.pi * step / total_steps))
|
| 517 |
+
|
| 518 |
+
_zeta = new_gs.get_opacity.clone().detach().squeeze()
|
| 519 |
+
_lambda = torch.zeros_like(_zeta)
|
| 520 |
+
_delta = 1e-7
|
| 521 |
+
_interval = 10
|
| 522 |
+
num_target = int((1 - simplify) * _zeta.shape[0])
|
| 523 |
+
|
| 524 |
+
with tqdm(total=2500, disable=not verbose, desc='Simplifying Gaussian') as pbar:
|
| 525 |
+
for i in range(2500):
|
| 526 |
+
# prune
|
| 527 |
+
if i % 100 == 0:
|
| 528 |
+
mask = new_gs.get_opacity.squeeze() > 0.05
|
| 529 |
+
mask = torch.nonzero(mask).squeeze()
|
| 530 |
+
new_gs._xyz = torch.nn.Parameter(new_gs._xyz[mask])
|
| 531 |
+
new_gs._rotation = torch.nn.Parameter(new_gs._rotation[mask])
|
| 532 |
+
new_gs._scaling = torch.nn.Parameter(new_gs._scaling[mask])
|
| 533 |
+
new_gs._opacity = torch.nn.Parameter(new_gs._opacity[mask])
|
| 534 |
+
new_gs._features_dc = new_gs._features_dc[mask]
|
| 535 |
+
new_gs._features_rest = new_gs._features_rest[mask] if new_gs._features_rest is not None else None
|
| 536 |
+
_zeta = _zeta[mask]
|
| 537 |
+
_lambda = _lambda[mask]
|
| 538 |
+
# update optimizer state
|
| 539 |
+
for param_group, new_param in zip(optimizer.param_groups, [new_gs._xyz, new_gs._rotation, new_gs._scaling, new_gs._opacity]):
|
| 540 |
+
stored_state = optimizer.state[param_group['params'][0]]
|
| 541 |
+
if 'exp_avg' in stored_state:
|
| 542 |
+
stored_state['exp_avg'] = stored_state['exp_avg'][mask]
|
| 543 |
+
stored_state['exp_avg_sq'] = stored_state['exp_avg_sq'][mask]
|
| 544 |
+
del optimizer.state[param_group['params'][0]]
|
| 545 |
+
param_group['params'][0] = new_param
|
| 546 |
+
optimizer.state[param_group['params'][0]] = stored_state
|
| 547 |
+
|
| 548 |
+
opacity = new_gs.get_opacity.squeeze()
|
| 549 |
+
|
| 550 |
+
# sparisfy
|
| 551 |
+
if i % _interval == 0:
|
| 552 |
+
_zeta = _lambda + opacity.detach()
|
| 553 |
+
if opacity.shape[0] > num_target:
|
| 554 |
+
index = _zeta.topk(num_target)[1]
|
| 555 |
+
_m = torch.ones_like(_zeta, dtype=torch.bool)
|
| 556 |
+
_m[index] = 0
|
| 557 |
+
_zeta[_m] = 0
|
| 558 |
+
_lambda = _lambda + opacity.detach() - _zeta
|
| 559 |
+
|
| 560 |
+
# sample a random view
|
| 561 |
+
view_idx = np.random.randint(len(observations))
|
| 562 |
+
observation = observations[view_idx]
|
| 563 |
+
extrinsic = extrinsics[view_idx]
|
| 564 |
+
intrinsic = intrinsics[view_idx]
|
| 565 |
+
|
| 566 |
+
color = renderer.render(new_gs, extrinsic, intrinsic)['color']
|
| 567 |
+
rgb_loss = torch.nn.functional.l1_loss(color, observation)
|
| 568 |
+
loss = rgb_loss + \
|
| 569 |
+
_delta * torch.sum(torch.pow(_lambda + opacity - _zeta, 2))
|
| 570 |
+
|
| 571 |
+
optimizer.zero_grad()
|
| 572 |
+
loss.backward()
|
| 573 |
+
optimizer.step()
|
| 574 |
+
|
| 575 |
+
# update lr
|
| 576 |
+
for j in range(len(optimizer.param_groups)):
|
| 577 |
+
optimizer.param_groups[j]['lr'] = cosine_anealing(optimizer, i, 2500, start_lr[j], end_lr[j])
|
| 578 |
+
|
| 579 |
+
pbar.set_postfix({'loss': rgb_loss.item(), 'num': opacity.shape[0], 'lambda': _lambda.mean().item()})
|
| 580 |
+
pbar.update()
|
| 581 |
+
|
| 582 |
+
new_gs._xyz = new_gs._xyz.data
|
| 583 |
+
new_gs._rotation = new_gs._rotation.data
|
| 584 |
+
new_gs._scaling = new_gs._scaling.data
|
| 585 |
+
new_gs._opacity = new_gs._opacity.data
|
| 586 |
+
|
| 587 |
+
return new_gs
|