Spaces:
Build error
Build error
cache embeddings
Browse files
app.py
CHANGED
|
@@ -4,11 +4,27 @@ import gradio as gr
|
|
| 4 |
from deepface import DeepFace
|
| 5 |
from datasets import load_dataset, DownloadConfig
|
| 6 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
os.system("rm -rf ~/.cache/huggingface/hub/datasets--Segizu--dataset_faces")
|
| 8 |
|
| 9 |
# ✅ Cargar el dataset de Hugging Face forzando la descarga limpia
|
| 10 |
-
download_config = DownloadConfig(
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
| 12 |
if "train" in dataset:
|
| 13 |
dataset = dataset["train"]
|
| 14 |
|
|
@@ -20,6 +36,13 @@ def preprocess_image(img):
|
|
| 20 |
|
| 21 |
# 📦 Construir base de datos de embeddings
|
| 22 |
def build_database():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
database = []
|
| 24 |
for i, item in enumerate(dataset):
|
| 25 |
try:
|
|
@@ -31,8 +54,15 @@ def build_database():
|
|
| 31 |
enforce_detection=False
|
| 32 |
)[0]["embedding"]
|
| 33 |
database.append((f"image_{i}", img, embedding))
|
|
|
|
| 34 |
except Exception as e:
|
| 35 |
print(f"❌ No se pudo procesar imagen {i}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
return database
|
| 37 |
|
| 38 |
# 🔍 Buscar rostros similares
|
|
@@ -54,7 +84,7 @@ def find_similar_faces(uploaded_image):
|
|
| 54 |
similarities.append((sim_score, name, db_img))
|
| 55 |
|
| 56 |
similarities.sort(reverse=True)
|
| 57 |
-
top_matches = similarities[:]
|
| 58 |
|
| 59 |
gallery_items = []
|
| 60 |
text_summary = ""
|
|
@@ -66,7 +96,9 @@ def find_similar_faces(uploaded_image):
|
|
| 66 |
return gallery_items, text_summary
|
| 67 |
|
| 68 |
# ⚙️ Inicializar base
|
|
|
|
| 69 |
database = build_database()
|
|
|
|
| 70 |
|
| 71 |
# 🎛️ Interfaz Gradio
|
| 72 |
demo = gr.Interface(
|
|
@@ -77,7 +109,7 @@ demo = gr.Interface(
|
|
| 77 |
gr.Textbox(label="🧠 Similitud", lines=6)
|
| 78 |
],
|
| 79 |
title="🔍 Buscador de Rostros con DeepFace",
|
| 80 |
-
description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/
|
| 81 |
)
|
| 82 |
|
| 83 |
demo.launch()
|
|
|
|
| 4 |
from deepface import DeepFace
|
| 5 |
from datasets import load_dataset, DownloadConfig
|
| 6 |
import os
|
| 7 |
+
import pickle
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
# 🔑 Configurar token de Hugging Face
|
| 11 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 12 |
+
if not HF_TOKEN:
|
| 13 |
+
raise ValueError("⚠️ Por favor, configura la variable de entorno HF_TOKEN para acceder al dataset privado")
|
| 14 |
+
|
| 15 |
+
# 📁 Configurar directorio de caché
|
| 16 |
+
CACHE_DIR = Path("cache")
|
| 17 |
+
CACHE_DIR.mkdir(exist_ok=True)
|
| 18 |
+
EMBEDDINGS_CACHE = CACHE_DIR / "embeddings.pkl"
|
| 19 |
+
|
| 20 |
os.system("rm -rf ~/.cache/huggingface/hub/datasets--Segizu--dataset_faces")
|
| 21 |
|
| 22 |
# ✅ Cargar el dataset de Hugging Face forzando la descarga limpia
|
| 23 |
+
download_config = DownloadConfig(
|
| 24 |
+
force_download=True,
|
| 25 |
+
token=HF_TOKEN
|
| 26 |
+
)
|
| 27 |
+
dataset = load_dataset("Segizu/facial-recognition", download_config=download_config)
|
| 28 |
if "train" in dataset:
|
| 29 |
dataset = dataset["train"]
|
| 30 |
|
|
|
|
| 36 |
|
| 37 |
# 📦 Construir base de datos de embeddings
|
| 38 |
def build_database():
|
| 39 |
+
# Intentar cargar embeddings desde caché
|
| 40 |
+
if EMBEDDINGS_CACHE.exists():
|
| 41 |
+
print("📂 Cargando embeddings desde caché...")
|
| 42 |
+
with open(EMBEDDINGS_CACHE, 'rb') as f:
|
| 43 |
+
return pickle.load(f)
|
| 44 |
+
|
| 45 |
+
print("🔄 Calculando embeddings (esto puede tomar unos minutos)...")
|
| 46 |
database = []
|
| 47 |
for i, item in enumerate(dataset):
|
| 48 |
try:
|
|
|
|
| 54 |
enforce_detection=False
|
| 55 |
)[0]["embedding"]
|
| 56 |
database.append((f"image_{i}", img, embedding))
|
| 57 |
+
print(f"✅ Procesada imagen {i+1}/{len(dataset)}")
|
| 58 |
except Exception as e:
|
| 59 |
print(f"❌ No se pudo procesar imagen {i}: {e}")
|
| 60 |
+
|
| 61 |
+
# Guardar embeddings en caché
|
| 62 |
+
print("💾 Guardando embeddings en caché...")
|
| 63 |
+
with open(EMBEDDINGS_CACHE, 'wb') as f:
|
| 64 |
+
pickle.dump(database, f)
|
| 65 |
+
|
| 66 |
return database
|
| 67 |
|
| 68 |
# 🔍 Buscar rostros similares
|
|
|
|
| 84 |
similarities.append((sim_score, name, db_img))
|
| 85 |
|
| 86 |
similarities.sort(reverse=True)
|
| 87 |
+
top_matches = similarities[:5]
|
| 88 |
|
| 89 |
gallery_items = []
|
| 90 |
text_summary = ""
|
|
|
|
| 96 |
return gallery_items, text_summary
|
| 97 |
|
| 98 |
# ⚙️ Inicializar base
|
| 99 |
+
print("🚀 Iniciando aplicación...")
|
| 100 |
database = build_database()
|
| 101 |
+
print(f"✅ Base de datos cargada con {len(database)} imágenes")
|
| 102 |
|
| 103 |
# 🎛️ Interfaz Gradio
|
| 104 |
demo = gr.Interface(
|
|
|
|
| 109 |
gr.Textbox(label="🧠 Similitud", lines=6)
|
| 110 |
],
|
| 111 |
title="🔍 Buscador de Rostros con DeepFace",
|
| 112 |
+
description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/facial-recognition`)."
|
| 113 |
)
|
| 114 |
|
| 115 |
demo.launch()
|