Spaces:
Runtime error
Runtime error
no cache embeddings baches
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ from datasets import load_dataset, DownloadConfig
|
|
6 |
import os
|
7 |
import pickle
|
8 |
from pathlib import Path
|
|
|
9 |
|
10 |
# 🔑 Configurar token de Hugging Face
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
@@ -44,24 +45,38 @@ def build_database():
|
|
44 |
|
45 |
print("🔄 Calculando embeddings (esto puede tomar unos minutos)...")
|
46 |
database = []
|
47 |
-
|
48 |
-
try:
|
49 |
-
img = item["image"]
|
50 |
-
img_processed = preprocess_image(img)
|
51 |
-
embedding = DeepFace.represent(
|
52 |
-
img_path=img_processed,
|
53 |
-
model_name="Facenet",
|
54 |
-
enforce_detection=False
|
55 |
-
)[0]["embedding"]
|
56 |
-
database.append((f"image_{i}", img, embedding))
|
57 |
-
print(f"✅ Procesada imagen {i+1}/{len(dataset)}")
|
58 |
-
except Exception as e:
|
59 |
-
print(f"❌ No se pudo procesar imagen {i}: {e}")
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
return database
|
67 |
|
@@ -74,6 +89,11 @@ def find_similar_faces(uploaded_image):
|
|
74 |
model_name="Facenet",
|
75 |
enforce_detection=False
|
76 |
)[0]["embedding"]
|
|
|
|
|
|
|
|
|
|
|
77 |
except:
|
78 |
return [], "⚠ No se detectó un rostro válido en la imagen."
|
79 |
|
|
|
6 |
import os
|
7 |
import pickle
|
8 |
from pathlib import Path
|
9 |
+
import gc
|
10 |
|
11 |
# 🔑 Configurar token de Hugging Face
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
45 |
|
46 |
print("🔄 Calculando embeddings (esto puede tomar unos minutos)...")
|
47 |
database = []
|
48 |
+
batch_size = 10 # Procesar 10 imágenes a la vez
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
for i in range(0, len(dataset), batch_size):
|
51 |
+
batch = dataset[i:i + batch_size]
|
52 |
+
print(f"📦 Procesando lote {i//batch_size + 1}/{(len(dataset) + batch_size - 1)//batch_size}")
|
53 |
+
|
54 |
+
for j, item in enumerate(batch):
|
55 |
+
try:
|
56 |
+
img = item["image"]
|
57 |
+
img_processed = preprocess_image(img)
|
58 |
+
embedding = DeepFace.represent(
|
59 |
+
img_path=img_processed,
|
60 |
+
model_name="Facenet",
|
61 |
+
enforce_detection=False
|
62 |
+
)[0]["embedding"]
|
63 |
+
database.append((f"image_{i+j}", img, embedding))
|
64 |
+
print(f"✅ Procesada imagen {i+j+1}/{len(dataset)}")
|
65 |
+
|
66 |
+
# Liberar memoria
|
67 |
+
del img_processed
|
68 |
+
gc.collect()
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
print(f"❌ No se pudo procesar imagen {i+j}: {e}")
|
72 |
+
|
73 |
+
# Guardar progreso después de cada lote
|
74 |
+
print("💾 Guardando progreso...")
|
75 |
+
with open(EMBEDDINGS_FILE, 'wb') as f:
|
76 |
+
pickle.dump(database, f)
|
77 |
+
|
78 |
+
# Liberar memoria después de cada lote
|
79 |
+
gc.collect()
|
80 |
|
81 |
return database
|
82 |
|
|
|
89 |
model_name="Facenet",
|
90 |
enforce_detection=False
|
91 |
)[0]["embedding"]
|
92 |
+
|
93 |
+
# Liberar memoria
|
94 |
+
del img_processed
|
95 |
+
gc.collect()
|
96 |
+
|
97 |
except:
|
98 |
return [], "⚠ No se detectó un rostro válido en la imagen."
|
99 |
|