Spaces:
Runtime error
Runtime error
metadata v4
Browse files- app.py +27 -12
- metadata.csv +0 -0
- metadata.py +14 -31
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import numpy as np
|
2 |
-
from PIL import Image
|
3 |
import gradio as gr
|
4 |
from deepface import DeepFace
|
5 |
from datasets import load_dataset, DownloadConfig, Image as HfImage
|
@@ -7,6 +7,8 @@ import os
|
|
7 |
import pickle
|
8 |
from pathlib import Path
|
9 |
import gc
|
|
|
|
|
10 |
|
11 |
# 🔑 Configurar token de Hugging Face
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
@@ -38,44 +40,57 @@ def build_database():
|
|
38 |
print("📂 Cargando embeddings desde el archivo...")
|
39 |
with open(EMBEDDINGS_FILE, 'rb') as f:
|
40 |
return pickle.load(f)
|
41 |
-
|
42 |
print("🔄 Calculando embeddings (esto puede tomar unos minutos)...")
|
43 |
database = []
|
44 |
batch_size = 10
|
45 |
-
|
46 |
for i in range(0, len(dataset), batch_size):
|
47 |
batch = dataset[i:i + batch_size]
|
48 |
print(f"📦 Procesando lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")
|
49 |
-
|
50 |
for j, item in enumerate(batch):
|
51 |
try:
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
img_processed = preprocess_image(img)
|
54 |
embedding = DeepFace.represent(
|
55 |
img_path=img_processed,
|
56 |
model_name="Facenet",
|
57 |
enforce_detection=False
|
58 |
)[0]["embedding"]
|
59 |
-
|
60 |
database.append((f"image_{i+j}", img, embedding))
|
61 |
print(f"✅ Procesada imagen {i+j+1}/{len(dataset)}")
|
62 |
-
|
63 |
-
# Liberar memoria
|
64 |
del img_processed
|
65 |
gc.collect()
|
66 |
-
|
|
|
|
|
|
|
67 |
except Exception as e:
|
68 |
print(f"❌ No se pudo procesar imagen {i+j}: {str(e)}")
|
69 |
continue
|
70 |
-
|
71 |
# Guardar progreso
|
72 |
if database:
|
73 |
print("💾 Guardando progreso...")
|
74 |
with open(EMBEDDINGS_FILE, 'wb') as f:
|
75 |
pickle.dump(database, f)
|
76 |
-
|
77 |
gc.collect()
|
78 |
-
|
79 |
return database
|
80 |
|
81 |
# 🔍 Buscar rostros similares
|
|
|
1 |
import numpy as np
|
2 |
+
from PIL import Image, UnidentifiedImageError
|
3 |
import gradio as gr
|
4 |
from deepface import DeepFace
|
5 |
from datasets import load_dataset, DownloadConfig, Image as HfImage
|
|
|
7 |
import pickle
|
8 |
from pathlib import Path
|
9 |
import gc
|
10 |
+
import requests
|
11 |
+
from io import BytesIO
|
12 |
|
13 |
# 🔑 Configurar token de Hugging Face
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
40 |
print("📂 Cargando embeddings desde el archivo...")
|
41 |
with open(EMBEDDINGS_FILE, 'rb') as f:
|
42 |
return pickle.load(f)
|
43 |
+
|
44 |
print("🔄 Calculando embeddings (esto puede tomar unos minutos)...")
|
45 |
database = []
|
46 |
batch_size = 10
|
47 |
+
|
48 |
for i in range(0, len(dataset), batch_size):
|
49 |
batch = dataset[i:i + batch_size]
|
50 |
print(f"📦 Procesando lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")
|
51 |
+
|
52 |
for j, item in enumerate(batch):
|
53 |
try:
|
54 |
+
# Manejar ruta local o URL remota
|
55 |
+
img_data = item["image"]
|
56 |
+
if isinstance(img_data, str):
|
57 |
+
response = requests.get(img_data)
|
58 |
+
img = Image.open(BytesIO(response.content))
|
59 |
+
elif isinstance(img_data, dict) and "bytes" in img_data:
|
60 |
+
img = Image.open(BytesIO(img_data["bytes"]))
|
61 |
+
elif isinstance(img_data, Image.Image):
|
62 |
+
img = img_data
|
63 |
+
else:
|
64 |
+
raise ValueError(f"Formato de imagen no soportado: {type(img_data)}")
|
65 |
+
|
66 |
img_processed = preprocess_image(img)
|
67 |
embedding = DeepFace.represent(
|
68 |
img_path=img_processed,
|
69 |
model_name="Facenet",
|
70 |
enforce_detection=False
|
71 |
)[0]["embedding"]
|
72 |
+
|
73 |
database.append((f"image_{i+j}", img, embedding))
|
74 |
print(f"✅ Procesada imagen {i+j+1}/{len(dataset)}")
|
75 |
+
|
|
|
76 |
del img_processed
|
77 |
gc.collect()
|
78 |
+
|
79 |
+
except UnidentifiedImageError:
|
80 |
+
print(f"❌ Imagen no válida en {i+j}: no se pudo identificar")
|
81 |
+
continue
|
82 |
except Exception as e:
|
83 |
print(f"❌ No se pudo procesar imagen {i+j}: {str(e)}")
|
84 |
continue
|
85 |
+
|
86 |
# Guardar progreso
|
87 |
if database:
|
88 |
print("💾 Guardando progreso...")
|
89 |
with open(EMBEDDINGS_FILE, 'wb') as f:
|
90 |
pickle.dump(database, f)
|
91 |
+
|
92 |
gc.collect()
|
93 |
+
|
94 |
return database
|
95 |
|
96 |
# 🔍 Buscar rostros similares
|
metadata.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
metadata.py
CHANGED
@@ -1,40 +1,23 @@
|
|
1 |
from huggingface_hub import HfApi
|
2 |
import csv
|
3 |
import os
|
4 |
-
from pathlib import Path
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
if not HF_TOKEN:
|
9 |
-
raise ValueError("⚠️ Por favor, configura la variable de entorno HF_TOKEN")
|
10 |
|
11 |
-
# 🗂️ Configurar repositorio
|
12 |
api = HfApi()
|
13 |
-
repo_id =
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
# Guardar metadata.csv
|
23 |
-
metadata_path = Path("metadata.csv")
|
24 |
-
with open(metadata_path, "w", newline="") as f:
|
25 |
-
writer = csv.writer(f)
|
26 |
-
writer.writerow(["image"])
|
27 |
-
for img in image_files:
|
28 |
-
writer.writerow([img])
|
29 |
-
|
30 |
-
print(f"✅ metadata.csv generado con {len(image_files)} imágenes.")
|
31 |
|
32 |
-
|
33 |
-
print(f"❌ Error: {str(e)}")
|
34 |
-
if "401" in str(e):
|
35 |
-
print("⚠️ Error de autenticación. Verifica que tu token de Hugging Face sea válido.")
|
36 |
-
elif "404" in str(e):
|
37 |
-
print("⚠️ No se encontró el repositorio. Verifica que el nombre del repositorio sea correcto.")
|
38 |
-
else:
|
39 |
-
print("⚠️ Ocurrió un error inesperado.")
|
40 |
|
|
|
1 |
from huggingface_hub import HfApi
|
2 |
import csv
|
3 |
import os
|
|
|
4 |
|
5 |
+
HF_TOKEN = os.getenv("HF_TOKEN") or "hf_token"
|
6 |
+
repo_id = "Segizu/facial-recognition"
|
|
|
|
|
7 |
|
|
|
8 |
api = HfApi()
|
9 |
+
files = api.list_repo_files(repo_id=repo_id, repo_type="dataset", token=HF_TOKEN)
|
10 |
+
|
11 |
+
# Generar URLs completas
|
12 |
+
base_url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/"
|
13 |
+
image_urls = [base_url + f for f in files if f.lower().endswith(".jpg")]
|
14 |
|
15 |
+
# Escribir nuevo metadata.csv
|
16 |
+
with open("metadata.csv", "w", newline="") as f:
|
17 |
+
writer = csv.writer(f)
|
18 |
+
writer.writerow(["image"])
|
19 |
+
for url in image_urls:
|
20 |
+
writer.writerow([url])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
print(f"✅ metadata.csv regenerado con URLs absolutas ({len(image_urls)} imágenes)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|