sd
Browse files
app.py
CHANGED
@@ -1,7 +1,69 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from langgraph.graph import StateGraph, END
|
3 |
+
from langchain_core.runnables import RunnableLambda
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import torch
|
6 |
|
7 |
+
# 1. Preparar el modelo Qwen/Qwen1.5-32B-Chat
|
8 |
+
model_id = "Qwen/Qwen1.5-32B-Chat"
|
9 |
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
model_id,
|
13 |
+
device_map="auto",
|
14 |
+
torch_dtype=torch.float16,
|
15 |
+
trust_remote_code=True
|
16 |
+
)
|
17 |
+
model.eval()
|
18 |
+
|
19 |
+
# 2. Crear un wrapper manual (sin langchain)
|
20 |
+
class QwenWrapper:
|
21 |
+
def invoke(self, prompt: str) -> str:
|
22 |
+
messages = [{"role": "user", "content": prompt}]
|
23 |
+
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
|
24 |
+
output = model.generate(inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
|
25 |
+
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
|
26 |
+
return decoded.split("assistant")[-1].strip()
|
27 |
+
|
28 |
+
qwen = QwenWrapper()
|
29 |
+
|
30 |
+
# 3. Definir el estado del agente
|
31 |
+
class AgentState(dict):
|
32 |
+
pass
|
33 |
+
|
34 |
+
# 4. Paso del agente con rol de agente de viajes
|
35 |
+
def agent_step(state: AgentState) -> AgentState:
|
36 |
+
user_input = state["input"]
|
37 |
+
# Se añade un prompt de contexto para que el agente actúe como experto en viajes
|
38 |
+
travel_prompt = (
|
39 |
+
"Eres un agente de viajes profesional y experimentado. "
|
40 |
+
"Asesora, recomienda y planifica itinerarios, destinos y actividades de viaje según las preferencias del usuario. "
|
41 |
+
f"Usuario: {user_input}"
|
42 |
+
)
|
43 |
+
response = qwen.invoke(travel_prompt)
|
44 |
+
return {"input": user_input, "output": response}
|
45 |
+
|
46 |
+
# 5. Crear nodo LangGraph
|
47 |
+
agent_node = RunnableLambda(agent_step)
|
48 |
+
|
49 |
+
graph_builder = StateGraph(AgentState)
|
50 |
+
graph_builder.add_node("agent", agent_node)
|
51 |
+
graph_builder.set_entry_point("agent")
|
52 |
+
graph_builder.add_edge("agent", END)
|
53 |
+
graph = graph_builder.compile()
|
54 |
+
|
55 |
+
# 6. Función para Gradio
|
56 |
+
def chat_with_agent(message):
|
57 |
+
result = graph.invoke({"input": message})
|
58 |
+
return result["output"]
|
59 |
+
|
60 |
+
# 7. Interfaz Gradio adaptada para un agente de viajes
|
61 |
+
iface = gr.Interface(
|
62 |
+
fn=chat_with_agent,
|
63 |
+
inputs=gr.Textbox(lines=2, placeholder="Haz una consulta sobre viajes..."),
|
64 |
+
outputs="text",
|
65 |
+
title="Agente de Viajes con LangGraph y Qwen",
|
66 |
+
description="Agente de viajes que utiliza LangGraph y Qwen/Qwen1.5-32B-Chat para recomendar destinos, itinerarios y consejos de viaje."
|
67 |
+
)
|
68 |
+
|
69 |
+
iface.launch()
|