medium
Browse files
app.py
CHANGED
@@ -1,72 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
)
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
iface = gr.Interface(
|
65 |
-
fn=
|
66 |
-
inputs=gr.Textbox(
|
67 |
-
outputs="
|
68 |
-
title="
|
69 |
-
description="Agente de viajes que utiliza LangGraph y Qwen/Qwen1.5-32B-Chat para recomendar destinos, itinerarios y consejos de viaje."
|
70 |
)
|
71 |
|
72 |
-
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from langgraph.graph import StateGraph, START, END
|
4 |
+
from langgraph.graph.message import add_messages
|
5 |
+
from typing import TypedDict, Annotated, Literal
|
6 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
7 |
+
from langchain_openai import ChatOpenAI
|
8 |
+
from pydantic import BaseModel, Field
|
9 |
import gradio as gr
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
# Configuraci贸n
|
14 |
+
max_tokens = 2000
|
15 |
+
num_iterations = 2
|
16 |
+
quality_threshold = 8
|
17 |
+
|
18 |
+
# Base de datos simulada de destinos tur铆sticos
|
19 |
+
travel_database = {
|
20 |
+
"paris": {"destination": "Paris", "price": 1500, "features": ["romantic", "cultural", "historic"]},
|
21 |
+
"bali": {"destination": "Bali", "price": 1200, "features": ["beach", "relaxing", "adventurous"]},
|
22 |
+
"new_york": {"destination": "New York", "price": 2000, "features": ["urban", "shopping", "nightlife"]},
|
23 |
+
"tokyo": {"destination": "Tokyo", "price": 1800, "features": ["modern", "cultural", "tech-savvy"]},
|
24 |
+
}
|
25 |
+
|
26 |
+
# Modelos estructurados para la salida de cada nodo
|
27 |
+
class GenerateRecommendation(BaseModel):
|
28 |
+
destination: str = Field(description="El destino tur铆stico recomendado")
|
29 |
+
explanation: str = Field(description="Explicaci贸n breve de la recomendaci贸n")
|
30 |
+
|
31 |
+
class RecommendationQualityScore(BaseModel):
|
32 |
+
score: int = Field(description="Puntuaci贸n de la recomendaci贸n entre 1-10")
|
33 |
+
comment: str = Field(description="Comentario sobre la calidad de la recomendaci贸n")
|
34 |
+
|
35 |
+
# Estado del grafo
|
36 |
+
class GraphState(TypedDict):
|
37 |
+
messages: Annotated[list, add_messages]
|
38 |
+
quality: Annotated[int, 0] # Valor inicial 0
|
39 |
+
iterations: Annotated[int, 0] # Valor inicial 0
|
40 |
+
|
41 |
+
# Inicializaci贸n del grafo
|
42 |
+
builder = StateGraph(GraphState)
|
43 |
+
|
44 |
+
llm = ChatOpenAI(
|
45 |
+
model="gpt-4o-mini",
|
46 |
+
temperature=0,
|
47 |
+
max_tokens=max_tokens,
|
48 |
+
api_key=os.getenv("OPENAI_API_KEY")
|
49 |
)
|
50 |
+
developer_structure_llm = llm.with_structured_output(GenerateRecommendation, method="json_mode")
|
51 |
+
reviewer_structure_llm = llm.with_structured_output(RecommendationQualityScore, method="json_mode")
|
52 |
+
|
53 |
+
def travel_recommender(state):
|
54 |
+
# Se asume que el 煤ltimo mensaje contiene las preferencias del usuario
|
55 |
+
user_requirements = state["messages"][-1].content
|
56 |
+
system_prompt = f"""
|
57 |
+
Eres un experto en recomendaciones de viajes.
|
58 |
+
Con base en las siguientes preferencias del usuario: {user_requirements},
|
59 |
+
selecciona el mejor destino de la siguiente base de datos: {travel_database}.
|
60 |
+
Responde en JSON con la clave `destination` para el destino recomendado y `explanation` con una breve raz贸n de la recomendaci贸n.
|
61 |
+
"""
|
62 |
+
human_messages = [msg for msg in state["messages"] if isinstance(msg, HumanMessage)]
|
63 |
+
ai_messages = [msg for msg in state["messages"] if isinstance(msg, AIMessage)]
|
64 |
+
system_messages = [SystemMessage(content=system_prompt)]
|
65 |
+
|
66 |
+
messages = system_messages + human_messages + ai_messages
|
67 |
+
message = developer_structure_llm.invoke(messages)
|
68 |
+
|
69 |
+
recommendation_output = f"Destination: {message.destination}\nExplanation: {message.explanation}"
|
70 |
+
# Se agrega la recomendaci贸n a los mensajes para los siguientes nodos
|
71 |
+
state["messages"].append(AIMessage(content=recommendation_output))
|
72 |
+
state["iterations"] += 1
|
73 |
+
return state
|
74 |
+
|
75 |
+
def recommendation_review(state):
|
76 |
+
system_prompt = """
|
77 |
+
Eres un revisor de recomendaciones con altos est谩ndares.
|
78 |
+
Revisa la recomendaci贸n proporcionada y asigna una puntuaci贸n de calidad entre 1-10.
|
79 |
+
Eval煤a la relevancia, precisi贸n y alineaci贸n con las necesidades del cliente.
|
80 |
+
Responde en JSON con las claves `score` y `comment`.
|
81 |
+
"""
|
82 |
+
human_messages = [msg for msg in state["messages"] if isinstance(msg, HumanMessage)]
|
83 |
+
ai_messages = [msg for msg in state["messages"] if isinstance(msg, AIMessage)]
|
84 |
+
system_messages = [SystemMessage(content=system_prompt)]
|
85 |
+
|
86 |
+
messages = system_messages + human_messages + ai_messages
|
87 |
+
message = reviewer_structure_llm.invoke(messages)
|
88 |
+
|
89 |
+
review_comment = f"Review Score: {message.score}\nComment: {message.comment}"
|
90 |
+
state["messages"].append(AIMessage(content=review_comment))
|
91 |
+
state["quality"] = message.score
|
92 |
+
return state
|
93 |
+
|
94 |
+
def final_recommendation(state):
|
95 |
+
system_prompt = "Revisa la recomendaci贸n final y proporciona una respuesta final para el usuario."
|
96 |
+
human_messages = [msg for msg in state["messages"] if isinstance(msg, HumanMessage)]
|
97 |
+
ai_messages = [msg for msg in state["messages"] if isinstance(msg, AIMessage)]
|
98 |
+
system_messages = [SystemMessage(content=system_prompt)]
|
99 |
+
|
100 |
+
messages = system_messages + human_messages + ai_messages
|
101 |
+
final_message = llm.invoke(messages)
|
102 |
+
|
103 |
+
# Se guarda la recomendaci贸n final en el estado para mostrarla
|
104 |
+
state["final_recommendation"] = final_message.content
|
105 |
+
state["messages"].append(AIMessage(content=f"Final Recommendation: {final_message.content}"))
|
106 |
+
return state
|
107 |
+
|
108 |
+
# Funci贸n para definir la condici贸n de la bifurcaci贸n en el grafo
|
109 |
+
def quality_gate_condition(state) -> Literal["travel_recommender", "final_recommendation"]:
|
110 |
+
if state["iterations"] >= num_iterations:
|
111 |
+
return "final_recommendation"
|
112 |
+
if state["quality"] < quality_threshold:
|
113 |
+
return "travel_recommender"
|
114 |
+
else:
|
115 |
+
return "final_recommendation"
|
116 |
+
|
117 |
+
# Agregar nodos al grafo
|
118 |
+
builder.add_node("travel_recommender", travel_recommender)
|
119 |
+
builder.add_node("recommendation_review", recommendation_review)
|
120 |
+
builder.add_node("final_recommendation", final_recommendation)
|
121 |
+
|
122 |
+
# Conectar nodos
|
123 |
+
builder.add_edge(START, "travel_recommender")
|
124 |
+
builder.add_edge("travel_recommender", "recommendation_review")
|
125 |
+
builder.add_edge("final_recommendation", END)
|
126 |
+
|
127 |
+
builder.add_conditional_edges("recommendation_review", quality_gate_condition)
|
128 |
+
|
129 |
+
graph = builder.compile()
|
130 |
+
|
131 |
+
# Funci贸n que ejecuta el grafo con la entrada del usuario
|
132 |
+
def run_graph(user_input: str) -> str:
|
133 |
+
initial_state = {"messages": [HumanMessage(content=user_input)], "quality": 0, "iterations": 0}
|
134 |
+
final_state = graph.invoke(initial_state)
|
135 |
+
return final_state.get("final_recommendation", "No se gener贸 una recomendaci贸n final.")
|
136 |
+
|
137 |
+
# Interfaz de Gradio
|
138 |
iface = gr.Interface(
|
139 |
+
fn=run_graph,
|
140 |
+
inputs=gr.Textbox(label="Ingrese sus preferencias de viaje"),
|
141 |
+
outputs=gr.Textbox(label="Recomendaci贸n Final"),
|
142 |
+
title="Sistema de Recomendaci贸n de Viajes"
|
|
|
143 |
)
|
144 |
|
145 |
+
if __name__ == "__main__":
|
146 |
+
iface.launch()
|