Spaces:
Build error
Build error
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_community.embeddings.spacy_embeddings import SpacyEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain.tools.retriever import create_retriever_tool | |
from dotenv import load_dotenv | |
from langchain_anthropic import ChatAnthropic | |
from langchain_openai import ChatOpenAI, OpenAIEmbeddings | |
from langchain.agents import AgentExecutor, create_tool_calling_agent | |
import os | |
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" | |
embeddings = SpacyEmbeddings(model_name="en_core_web_sm") | |
def pdf_read(pdf_doc): | |
text = "" | |
for pdf in pdf_doc: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def vector_store(text_chunks): | |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
vector_store.save_local("faiss_db") | |
def get_conversational_chain(tools,ques): | |
#os.environ["ANTHROPIC_API_KEY"]=os.getenv["ANTHROPIC_API_KEY"] | |
#llm = ChatAnthropic(model="claude-3-sonnet-20240229", temperature=0, api_key=os.getenv("ANTHROPIC_API_KEY"),verbose=True) | |
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, api_key="") | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
( | |
"system", | |
"""You are a helpful assistant. Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in | |
provided context just say, "answer is not available in the context", don't provide the wrong answer""", | |
), | |
("placeholder", "{chat_history}"), | |
("human", "{input}"), | |
("placeholder", "{agent_scratchpad}"), | |
] | |
) | |
tool=[tools] | |
agent = create_tool_calling_agent(llm, tool, prompt) | |
agent_executor = AgentExecutor(agent=agent, tools=tool, verbose=True) | |
response=agent_executor.invoke({"input": ques}) | |
print(response) | |
st.write("Reply: ", response['output']) | |
def user_input(user_question): | |
new_db = FAISS.load_local("faiss_db", embeddings,allow_dangerous_deserialization=True) | |
retriever=new_db.as_retriever() | |
retrieval_chain= create_retriever_tool(retriever,"pdf_extractor","This tool is to give answer to queries from the pdf") | |
get_conversational_chain(retrieval_chain,user_question) | |
def main(): | |
st.set_page_config("Chat PDF") | |
st.header("RAG based Chat with PDF") | |
user_question = st.text_input("Ask a Question from the PDF Files") | |
if user_question: | |
user_input(user_question) | |
with st.sidebar: | |
st.title("Menu:") | |
pdf_doc = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) | |
if st.button("Submit & Process"): | |
with st.spinner("Processing..."): | |
raw_text = pdf_read(pdf_doc) | |
text_chunks = get_chunks(raw_text) | |
vector_store(text_chunks) | |
st.success("Done") | |
if __name__ == "__main__": | |
main() |