notebook v1
Browse files- Dockerfile +18 -0
- lstm_gpu_demo.ipynb +86 -0
- requirements.tct +5 -0
Dockerfile
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Imagen base con soporte de CUDA
|
2 |
+
FROM tensorflow/tensorflow:2.12.0-gpu
|
3 |
+
|
4 |
+
# Crear directorio de trabajo
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copiar archivos de dependencias
|
8 |
+
COPY requirements.txt .
|
9 |
+
|
10 |
+
# Instalar dependencias
|
11 |
+
RUN pip install --upgrade pip && \
|
12 |
+
pip install -r requirements.txt
|
13 |
+
|
14 |
+
# Copiar el notebook o app
|
15 |
+
COPY . .
|
16 |
+
|
17 |
+
# Comando por defecto (puede cambiarse según necesidad)
|
18 |
+
CMD ["jupyter", "notebook", "--ip=0.0.0.0", "--allow-root", "--NotebookApp.token=''", "--NotebookApp.password=''", "--no-browser"]
|
lstm_gpu_demo.ipynb
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import tensorflow as tf\n",
|
10 |
+
"import numpy as np\n",
|
11 |
+
"import matplotlib.pyplot as plt"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": null,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"print(\"GPU disponible:\", tf.config.list_physical_devices('GPU'))\n"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": null,
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"N = 10000 # muestras\n",
|
30 |
+
"T = 30 # pasos de tiempo\n",
|
31 |
+
"F = 10 # features\n",
|
32 |
+
"\n",
|
33 |
+
"X = np.random.rand(N, T, F)\n",
|
34 |
+
"y = np.random.rand(N, 1)"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"from tensorflow.keras.models import Sequential\n",
|
44 |
+
"from tensorflow.keras.layers import LSTM, Dense\n",
|
45 |
+
"\n",
|
46 |
+
"model = Sequential([\n",
|
47 |
+
" LSTM(64, input_shape=(T, F)),\n",
|
48 |
+
" Dense(1)\n",
|
49 |
+
"])\n",
|
50 |
+
"\n",
|
51 |
+
"model.compile(optimizer='adam', loss='mse')"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": null,
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"\n",
|
61 |
+
"history = model.fit(X, y, epochs=5, batch_size=64)\n",
|
62 |
+
"\n",
|
63 |
+
"# 6. Graficar pérdida\n",
|
64 |
+
"plt.plot(history.history['loss'])\n",
|
65 |
+
"plt.title('Pérdida de entrenamiento')\n",
|
66 |
+
"plt.xlabel('Época')\n",
|
67 |
+
"plt.ylabel('Loss')\n",
|
68 |
+
"plt.grid(True)\n",
|
69 |
+
"plt.show()\n"
|
70 |
+
]
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"metadata": {
|
74 |
+
"kernelspec": {
|
75 |
+
"display_name": "Python 3",
|
76 |
+
"language": "python",
|
77 |
+
"name": "python3"
|
78 |
+
},
|
79 |
+
"language_info": {
|
80 |
+
"name": "python",
|
81 |
+
"version": "3.11.9"
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"nbformat": 4,
|
85 |
+
"nbformat_minor": 2
|
86 |
+
}
|
requirements.tct
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow>=2.12
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
matplotlib
|
5 |
+
jupyter
|