Spaces:
Sleeping
Sleeping
File size: 5,755 Bytes
5b50796 507a920 45cfc26 979d590 507a920 4fbf7fa 507a920 4fbf7fa 507a920 45cfc26 979d590 45cfc26 979d590 d8d4f16 e58377a 45cfc26 979d590 45cfc26 979d590 fe9d707 45cfc26 979d590 45cfc26 979d590 45cfc26 979d590 45cfc26 979d590 45cfc26 979d590 45cfc26 979d590 45cfc26 979d590 1ebd803 45cfc26 979d590 45cfc26 979d590 45cfc26 979d590 45cfc26 1ebd803 12add53 45cfc26 12add53 c4d75ea 45cfc26 507a920 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import torch
import random
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import nltk
import gradio as gr
from nltk.sentiment import SentimentIntensityAnalyzer
from textblob import TextBlob
import warnings
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
AutoModelForSequenceClassification,
)
# Suppress warnings and fix Gradio schema bug
warnings.filterwarnings('ignore', category=FutureWarning)
nltk.download('vader_lexicon', quiet=True)
# --- Emotion Analyzer ---
class EmotionalAnalyzer:
def __init__(self):
self.model = AutoModelForSequenceClassification.from_pretrained(
"bhadresh-savani/distilbert-base-uncased-emotion"
)
self.tokenizer = AutoTokenizer.from_pretrained(
"bhadresh-savani/distilbert-base-uncased-emotion"
)
self.labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
self.sia = SentimentIntensityAnalyzer()
def predict_emotion(self, text):
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = self.model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
return self.labels[torch.argmax(probs).item()]
def analyze(self, text):
vader_scores = self.sia.polarity_scores(text)
blob = TextBlob(text)
blob_data = {
"polarity": blob.sentiment.polarity,
"subjectivity": blob.sentiment.subjectivity,
"word_count": len(blob.words),
"sentence_count": len(blob.sentences),
}
return {
"emotion": self.predict_emotion(text),
"vader": vader_scores,
"textblob": blob_data,
}
def plot_emotions(self):
simulated_emotions = {
"joy": random.randint(10, 30),
"sadness": random.randint(5, 20),
"anger": random.randint(10, 25),
"fear": random.randint(5, 15),
"love": random.randint(10, 30),
"surprise": random.randint(5, 20),
}
df = pd.DataFrame(list(simulated_emotions.items()), columns=["Emotion", "Percentage"])
plt.figure(figsize=(8, 4))
sns.barplot(x="Emotion", y="Percentage", data=df)
plt.title("Simulated Emotional State")
plt.tight_layout()
path = "emotions.png"
plt.savefig(path)
plt.close()
return path
# --- Text Completion LLM ---
tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")
def generate_completion(message, temperature, max_length):
inputs = tokenizer(message, return_tensors="pt", truncation=True, max_length=512)
input_ids = inputs["input_ids"]
current_text = message
for _ in range(max_length - input_ids.shape[1]):
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits[:, -1, :] / temperature
probs = torch.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
if next_token.item() == tokenizer.eos_token_id:
break
input_ids = torch.cat([input_ids, next_token], dim=-1)
new_token_text = tokenizer.decode(next_token[0], skip_special_tokens=True)
current_text += new_token_text
yield current_text
# --- Emotion-Aware LLM Response ---
def emotion_aware_response(input_text):
analyzer = EmotionalAnalyzer()
results = analyzer.analyze(input_text)
image_path = analyzer.plot_emotions()
prompt = (
f"Input: {input_text}\n"
f"Detected Emotion: {results['emotion']}\n"
f"VADER Scores: {results['vader']}\n"
f"Respond thoughtfully and emotionally aware:"
)
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
output_ids = model.generate(
inputs.input_ids,
max_length=512,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
summary = (
f"Emotion: {results['emotion']}\n"
f"VADER: {results['vader']}\n"
f"TextBlob: {results['textblob']}\n\n"
f"LLM Response:\n{response}"
)
return summary, image_path
# --- Gradio Interface ---
with gr.Blocks(title="ELN LLaMA 1B Enhanced Demo") as app:
gr.Markdown("## 🧠 ELN-LLaMA Emotion-Aware & Completion Interface")
with gr.Tab("💬 Emotion-Aware Response"):
with gr.Row():
input_text = gr.Textbox(label="Input Text", lines=4, placeholder="Type something with emotion or meaning...")
with gr.Row():
text_output = gr.Textbox(label="Response", lines=8)
img_output = gr.Image(label="Emotional Visualization")
emotion_btn = gr.Button("Generate Emotion-Aware Response")
emotion_btn.click(emotion_aware_response, inputs=input_text, outputs=[text_output, img_output])
with gr.Tab("📝 Text Completion"):
comp_text = gr.Textbox(label="Prompt", lines=4)
comp_temp = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature")
comp_len = gr.Slider(minimum=50, maximum=500, value=200, step=50, label="Max Length")
comp_output = gr.Textbox(label="Generated Completion", lines=8)
comp_button = gr.Button("Complete Text")
comp_button.click(generate_completion, inputs=[comp_text, comp_temp, comp_len], outputs=comp_output)
app.launch(share=True)
|