Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -68,21 +68,14 @@ class MemoryEfficientNN(nn.Module):
|
|
| 68 |
class MemoryEfficientDataset(IterableDataset):
|
| 69 |
def __init__(self, X, y, batch_size):
|
| 70 |
self.X = X
|
| 71 |
-
self.y = y.astype(int) # Convert labels to
|
| 72 |
self.batch_size = batch_size
|
| 73 |
|
| 74 |
def __iter__(self):
|
| 75 |
for i in range(0, len(self.y), self.batch_size):
|
| 76 |
X_batch = self.X[i:i+self.batch_size].toarray()
|
| 77 |
-
y_batch = self.y[i:i+self.batch_size]
|
| 78 |
-
yield torch.FloatTensor(X_batch),
|
| 79 |
-
|
| 80 |
-
def __iter__(self):
|
| 81 |
-
for i in range(0, len(self.y), self.batch_size):
|
| 82 |
-
X_batch = self.X[i:i+self.batch_size].toarray()
|
| 83 |
-
y_batch = self.y[i:i+self.batch_size]
|
| 84 |
-
yield torch.FloatTensor(X_batch), torch.LongTensor(y_batch)
|
| 85 |
-
|
| 86 |
# Train Memory-Efficient Neural Network
|
| 87 |
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
|
| 88 |
input_size = X_train.shape[1]
|
|
@@ -276,6 +269,7 @@ def get_sentiment(text):
|
|
| 276 |
result = sentiment_pipeline(text)[0]
|
| 277 |
return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
|
| 278 |
|
|
|
|
| 279 |
def process_input(text):
|
| 280 |
try:
|
| 281 |
normalized_text = normalize_context(text)
|
|
@@ -306,7 +300,6 @@ def process_input(text):
|
|
| 306 |
error_message = f"An error occurred: {str(e)}"
|
| 307 |
print(error_message) # Logging the error
|
| 308 |
return error_message, error_message, error_message, error_message
|
| 309 |
-
|
| 310 |
iface = gr.Interface(
|
| 311 |
fn=process_input,
|
| 312 |
inputs="text",
|
|
|
|
| 68 |
class MemoryEfficientDataset(IterableDataset):
|
| 69 |
def __init__(self, X, y, batch_size):
|
| 70 |
self.X = X
|
| 71 |
+
self.y = torch.LongTensor(y.astype(int)) # Convert labels to long tensors
|
| 72 |
self.batch_size = batch_size
|
| 73 |
|
| 74 |
def __iter__(self):
|
| 75 |
for i in range(0, len(self.y), self.batch_size):
|
| 76 |
X_batch = self.X[i:i+self.batch_size].toarray()
|
| 77 |
+
y_batch = self.y[i:i+self.batch_size].unsqueeze(1) # Add a new dimension to the labels
|
| 78 |
+
yield torch.FloatTensor(X_batch), y_batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
# Train Memory-Efficient Neural Network
|
| 80 |
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
|
| 81 |
input_size = X_train.shape[1]
|
|
|
|
| 269 |
result = sentiment_pipeline(text)[0]
|
| 270 |
return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
|
| 271 |
|
| 272 |
+
|
| 273 |
def process_input(text):
|
| 274 |
try:
|
| 275 |
normalized_text = normalize_context(text)
|
|
|
|
| 300 |
error_message = f"An error occurred: {str(e)}"
|
| 301 |
print(error_message) # Logging the error
|
| 302 |
return error_message, error_message, error_message, error_message
|
|
|
|
| 303 |
iface = gr.Interface(
|
| 304 |
fn=process_input,
|
| 305 |
inputs="text",
|