import warnings import numpy as np import pandas as pd import os import json import random import gradio as gr import torch from sklearn.preprocessing import OneHotEncoder from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline from deap import base, creator, tools, algorithms import nltk from nltk.sentiment import SentimentIntensityAnalyzer from nltk.tokenize import word_tokenize from nltk.tag import pos_tag from nltk.chunk import ne_chunk from textblob import TextBlob import matplotlib.pyplot as plt import seaborn as sns from accelerate import init_empty_weights, load_checkpoint_and_dispatch warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download') # Download necessary NLTK data nltk.download('vader_lexicon', quiet=True) nltk.download('punkt', quiet=True) nltk.download('averaged_perceptron_tagger', quiet=True) nltk.download('maxent_ne_chunker', quiet=True) nltk.download('words', quiet=True) # Initialize Example Dataset (For Emotion Prediction) data = { 'context': [ 'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm', 'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated', 'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated', 'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic', 'I am pessimistic', 'I feel bored', 'I am envious' ], 'emotion': [ 'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger', 'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust', 'disgust', 'optimism', 'pessimism', 'boredom', 'envy' ] } df = pd.DataFrame(data) # Encoding the contexts using One-Hot Encoding (memory-efficient) try: encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=True) except TypeError: encoder = OneHotEncoder(handle_unknown='ignore', sparse=True) contexts_encoded = encoder.fit_transform(df[['context']]) # Encoding emotions emotions_target = pd.Categorical(df['emotion']).codes emotion_classes = pd.Categorical(df['emotion']).categories # Load pre-trained BERT model for emotion prediction emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion") emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion") # Load pre-trained large language model and tokenizer for response generation with increased context window response_model_name = "gpt2-xl" response_tokenizer = AutoTokenizer.from_pretrained(response_model_name) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") response_model = load_checkpoint_and_dispatch(AutoModelForCausalLM, response_model_name, device_map="auto") # Set the pad token response_tokenizer.pad_token = response_tokenizer.eos_token # Enhanced Emotional States emotions = { 'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0}, 'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0}, 'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0}, 'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0}, 'love': {'percentage': 10, 'motivation': 'affectionate', 'intensity': 0}, 'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0}, 'neutral': {'percentage': 40, 'motivation': 'balanced', 'intensity': 0}, } total_percentage = 100 emotion_history_file = 'emotion_history.json' global conversation_history conversation_history = [] max_history_length = 1000 # Increase the maximum history length def load_historical_data(file_path=emotion_history_file): if os.path.exists(file_path): with open(file_path, 'r') as file: return json.load(file) return [] def save_historical_data(historical_data, file_path=emotion_history_file): with open(file_path, 'w') as file: json.dump(historical_data, file) emotion_history = load_historical_data() def update_emotion(emotion, percentage, intensity): emotions[emotion]['percentage'] += percentage emotions[emotion]['intensity'] = intensity # Normalize percentages total = sum(e['percentage'] for e in emotions.values()) for e in emotions: emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100 def normalize_context(context): return context.lower().strip() # Create FitnessMulti and Individual outside of evolve_emotions creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2)) creator.create("Individual", list, fitness=creator.FitnessMulti) def evaluate(individual): emotion_values = individual[:len(emotions)] intensities = individual[len(emotions):] total_diff = abs(100 - sum(emotion_values)) intensity_range = max(intensities) - min(intensities) emotion_balance = max(emotion_values) - min(emotion_values) return total_diff, intensity_range, emotion_balance def evolve_emotions(): toolbox = base.Toolbox() toolbox.register("attr_float", random.uniform, 0, 100) toolbox.register("attr_intensity", random.uniform, 0, 10) toolbox.register("individual", tools.initCycle, creator.Individual, (toolbox.attr_float,) * len(emotions) + (toolbox.attr_intensity,) * len(emotions), n=1) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2) toolbox.register("select", tools.selNSGA2) toolbox.register("evaluate", evaluate) population = toolbox.population(n=100) algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=50, stats=None, halloffame=None, verbose=False) best_individual = tools.selBest(population, k=1)[0] emotion_values = best_individual[:len(emotions)] intensities = best_individual[len(emotions):] for i, (emotion, data) in enumerate(emotions.items()): data['percentage'] = emotion_values[i] data['intensity'] = intensities[i] # Normalize percentages total = sum(e['percentage'] for e in emotions.values()) for e in emotions: emotions[e]['percentage'] = (emotions[e]['percentage'] /total) * 100 def update_emotion_history(emotion, percentage, intensity, context): entry = { 'emotion': emotion, 'percentage': percentage, 'intensity': intensity, 'context': context, 'timestamp': pd.Timestamp.now().isoformat() } emotion_history.append(entry) save_historical_data(emotion_history) # Adding 443 features additional_features = {} for i in range(443): additional_features[f'feature_{i+1}'] = 0 def feature_transformations(): global additional_features for feature in additional_features: additional_features[feature] += random.uniform(-1, 1) def generate_response(input_text, ai_emotion, conversation_history): # Prepare a prompt based on the current emotion and input prompt = f"You are an AI assistant created by Sephiroth Baptiste, and you are currently feeling {ai_emotion}. Your response should reflect this emotion. Human: {input_text}\nAI:" # Add conversation history to the prompt for entry in conversation_history[-100:]: # Use last 100 entries for context prompt = f"Human: {entry['user']}\nAI: {entry['response']}\n" + prompt inputs = response_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=8192).to(device) # Adjust generation parameters based on emotion temperature = 0.7 if (ai_emotion == 'anger'): temperature = 0.9 # more intense elif (ai_emotion == 'calmness'): temperature = 0.5 # more composed outputs = response_model.generate( inputs['input_ids'], max_length=500, num_return_sequences=1, temperature=temperature, pad_token_id=response_tokenizer.eos_token_id ) response = response_tokenizer.decode(outputs[0], skip_special_tokens=True) response = response.replace(prompt, "").strip() conversation_history.append({'user': input_text, 'response': response}) return response def process_input(input_text): # Predict emotion of the input text inputs = emotion_prediction_tokenizer(input_text, return_tensors='pt', truncation=True, padding=True).to(device) with torch.no_grad(): logits = emotion_prediction_model(**inputs).logits predicted_class_id = torch.argmax(logits, dim=1).item() predicted_emotion = emotion_classes[predicted_class_id] # Update emotion percentages and intensities based on predicted emotion update_emotion(predicted_emotion, 5, 5) # Example increment values update_emotion_history(predicted_emotion, emotions[predicted_emotion]['percentage'], emotions[predicted_emotion]['intensity'], input_text) # Evolve emotions evolve_emotions() # Generate response response = generate_response(input_text, predicted_emotion, conversation_history) # Feature transformations feature_transformations() return response def plot_emotion_distribution(): emotion_labels = list(emotions.keys()) emotion_percentages = [emotions[emotion]['percentage'] for emotion in emotion_labels] emotion_intensities = [emotions[emotion]['intensity'] for emotion in emotion_labels] fig, ax1 = plt.subplots(figsize=(10, 6)) ax2 = ax1.twinx() ax1.bar(emotion_labels, emotion_percentages, color='b', alpha=0.6) ax2.plot(emotion_labels, emotion_intensities, color='r', marker='o', linestyle='dashed', linewidth=2) ax1.set_xlabel('Emotion') ax1.set_ylabel('Percentage', color='b') ax2.set_ylabel('Intensity', color='r') plt.title('Emotion Distribution and Intensities') plt.show() def clear_conversation_history(): global conversation_history conversation_history = [] # Function to display the history of the 10 most recent conversations def display_recent_conversations(): num_conversations = min(len(conversation_history), 10) recent_conversations = conversation_history[-num_conversations:] conversation_text = "" for i, conversation in enumerate(recent_conversations, start=1): conversation_text += f"Conversation {i}:\n" conversation_text += f"User: {conversation['user']}\n" conversation_text += f"AI: {conversation['response']}\n\n" return conversation_text.strip() with gr.Blocks() as chatbot: gr.Markdown("# AI Chatbot with Enhanced Emotions") with gr.Row(): with gr.Column(): input_text = gr.Textbox(label="Input Text") response_text = gr.Textbox(label="Response", interactive=False) send_button = gr.Button("Send") clear_button = gr.Button("Clear Conversation History") with gr.Row(): recent_conversations = gr.Textbox(label="Recent Conversations", interactive=False) update_button = gr.Button("Update Recent Conversations") with gr.Row(): emotion_plot = gr.Plot(label="Emotion Distribution and Intensities") update_plot_button = gr.Button("Update Emotion Plot") send_button.click(fn=process_input, inputs=input_text, outputs=response_text) clear_button.click(fn=clear_conversation_history) update_button.click(fn=display_recent_conversations, outputs=recent_conversations) update_plot_button.click(fn=plot_emotion_distribution, outputs=emotion_plot) chatbot.launch()