File size: 4,168 Bytes
bd712f3
 
d7d4643
 
d7061cb
 
 
d7d4643
bd712f3
d7061cb
 
 
 
 
bd712f3
d7061cb
d7d4643
bd712f3
 
d7d4643
 
 
bd712f3
d7d4643
 
 
d7061cb
bd712f3
 
d7061cb
bd712f3
 
 
d7061cb
bd712f3
d7061cb
 
 
 
d7d4643
 
 
d7061cb
 
bd712f3
 
ad9e704
e0651bb
eb95235
 
 
e0651bb
 
 
eb95235
 
e0651bb
 
eb95235
e0651bb
eb95235
 
 
bd712f3
 
e0651bb
fff55de
e0651bb
eb95235
e0651bb
eb95235
e0651bb
eb95235
bd712f3
d7061cb
bd712f3
 
 
 
d7061cb
 
bd712f3
d7061cb
 
bd712f3
d7061cb
 
 
 
 
 
bd712f3
d7061cb
 
 
 
 
 
d7d4643
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import streamlit as st
import numpy as np
import tensorflow as tf
from tensorflow import keras
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import random

# Define a function to generate a dataset
def generate_dataset(task_id):
    X, y = make_classification(n_samples=100, n_features=10, n_informative=5, n_redundant=3, n_repeated=2, random_state=task_id)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=task_id)
    return X_train, X_test, y_train, y_test

# Define a neural network class
class Net(keras.Model):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = keras.layers.Dense(20, activation='relu', input_shape=(10,))
        self.fc2 = keras.layers.Dense(10, activation='relu')
        self.fc3 = keras.layers.Dense(2)

    def call(self, x):
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x

# Define a genetic algorithm class
class GeneticAlgorithm:
    def __init__(self, population_size):
        self.population_size = population_size
        self.population = [Net() for _ in range(population_size)]

    def selection(self, task_id):
        X_train, X_test, y_train, y_test = generate_dataset(task_id)
        fitness = []
        for net in self.population:
            net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
            net.fit(X_train, y_train, epochs=10, verbose=0)
            loss, accuracy = net.evaluate(X_test, y_test, verbose=0)
            fitness.append(accuracy)
        self.population = [self.population[i] for i in np.argsort(fitness)[-self.population_size//2:]]

    def crossover(self):
        offspring = []
        X = np.random.rand(1, 10)  # dummy input to build the layers
        for _ in range(self.population_size//2):
            parent1, parent2 = random.sample(self.population, 2)
            child = Net()
            child(X)  # build the layers
            parent1(X)  # build the layers
            parent2(X)  # build the layers
            
            # Average the weights of the two parents
            parent1_weights = parent1.get_weights()
            parent2_weights = parent2.get_weights()
            child_weights = [(np.array(w1) + np.array(w2)) / 2 for w1, w2 in zip(parent1_weights, parent2_weights)]
            child.set_weights(child_weights)
            
            offspring.append(child)
        self.population += offspring

    def mutation(self):
        X = np.random.rand(1, 10)  # dummy input to build the layers
        for net in self.population:
            net(X)  # build the layers
            if random.random() < 0.1:
                weights = net.get_weights()
                new_weights = [np.array(w) + np.random.randn(*w.shape) * 0.1 for w in weights]
                net.set_weights(new_weights)

# Streamlit app
st.title("Evolution of Sub-Models")

# Parameters
st.sidebar.header("Parameters")
population_size = st.sidebar.slider("Population size", 10, 100, 50)
num_tasks = st.sidebar.slider("Number of tasks", 1, 10, 5)
num_generations = st.sidebar.slider("Number of generations", 1, 100, 10)

# Run the evolution
if st.button("Run evolution"):
    ga = GeneticAlgorithm(population_size)
    for generation in range(num_generations):
        for task_id in range(num_tasks):
            ga.selection(task_id)
            ga.crossover()
            ga.mutation()
        st.write(f"Generation {generation+1} complete")

    # Evaluate the final population
    final_accuracy = []
    for task_id in range(num_tasks):
        X_train, X_test, y_train, y_test = generate_dataset(task_id)
        accuracy = []
        for net in ga.population:
            net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
            net.fit(X_train, y_train, epochs=10, verbose=0)
            loss, acc = net.evaluate(X_test, y_test, verbose=0)
            accuracy.append(acc)
        final_accuracy.append(np.mean(accuracy))
    st.write(f"Final accuracy: {np.mean(final_accuracy)}")