File size: 10,363 Bytes
81be535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import streamlit as st
import numpy as np
import random
import matplotlib.pyplot as plt
from scipy.spatial import distance
from sklearn.cluster import KMeans
import networkx as nx
from collections import deque

# Constants
GRID_SIZE = 200
FOOD_SOURCES = [(20, 20), (80, 80), (150, 150), (40, 160), (180, 30)]
OBSTACLES = [(50, 50), (100, 100), (150, 50), (70, 130), (120, 80)]
PHEROMONE_DECAY_RATE = 0.02
PHEROMONE_DIFFUSION_RATE = 0.05
MAX_ANTS = 100
MUTATION_RATE = 0.01

# Pheromone Grid
pheromone_grid = np.zeros((GRID_SIZE, GRID_SIZE, 3))  # 3 channels: food, danger, exploration

# Graph representation of the environment
env_graph = nx.grid_2d_graph(GRID_SIZE, GRID_SIZE)

# Remove edges for obstacles
for obstacle in OBSTACLES:
    env_graph.remove_node(obstacle)

# Ant Class
class Ant:
    def __init__(self, position, genome):
        self.position = position
        self.genome = genome
        self.carrying_food = False
        self.energy = 100
        self.memory = deque(maxlen=20)
        self.path_home = []
        self.role = "explorer"
        self.communication_range = 10
        self.q_table = np.zeros((GRID_SIZE, GRID_SIZE, 4))

    def perceive_environment(self, pheromone_grid, ants):
        self.food_pheromone = pheromone_grid[self.position[0], self.position[1], 0]
        self.danger_pheromone = pheromone_grid[self.position[0], self.position[1], 1]
        self.exploration_pheromone = pheromone_grid[self.position[0], self.position[1], 2]
        
        # Perceive nearby ants
        self.nearby_ants = [ant for ant in ants if distance.euclidean(self.position, ant.position) <= self.communication_range]

    def act(self, pheromone_grid):
        possible_actions = self.get_possible_actions()
        
        if random.random() < self.genome['exploration_rate']:  
            action = random.choice(possible_actions)
        else:
            action = np.argmax(self.q_table[self.position[0], self.position[1], possible_actions])

        reward = self.calculate_reward()
        self.update_q_table(action, reward)

        return action

    def calculate_reward(self):
        if self.carrying_food:
            return 10
        elif self.position in FOOD_SOURCES:
            return 20
        elif self.position in OBSTACLES:
            return -10
        else:
            return -1 + self.food_pheromone - self.danger_pheromone + 0.5 * self.exploration_pheromone

    def update_q_table(self, action, reward):
        self.q_table[self.position[0], self.position[1], action] = (
            (1 - self.genome['learning_rate']) * self.q_table[self.position[0], self.position[1], action] +
            self.genome['learning_rate'] * (reward + self.genome['discount_factor'] * np.max(self.q_table[self.position[0], self.position[1]]))
        )

    def get_possible_actions(self):
        return list(env_graph.neighbors(self.position))

    def update(self, pheromone_grid, ants):
        self.perceive_environment(pheromone_grid, ants)
        action = self.act(pheromone_grid)
        self.position = action

        self.energy -= 1
        if self.energy <= 0:
            return False  # Ant dies

        if self.carrying_food:
            pheromone_grid[self.position[0], self.position[1], 0] += 5
            if self.position == (0, 0):  # Drop food at nest
                self.carrying_food = False
                self.energy = min(100, self.energy + 50)
                return True  # Food collected successfully
        
        if self.position in FOOD_SOURCES and not self.carrying_food:
            self.carrying_food = True
            pheromone_grid[self.position[0], self.position[1], 0] += 10
        
        if self.position in OBSTACLES:
            pheromone_grid[self.position[0], self.position[1], 1] += 5
        
        pheromone_grid[self.position[0], self.position[1], 2] += 1  # Exploration pheromone

        self.memory.append(self.position)
        
        # Update role based on situation
        if self.carrying_food:
            self.role = "carrier"
        elif self.food_pheromone > 5:
            self.role = "follower"
        else:
            self.role = "explorer"

        # Path planning
        if self.carrying_food and not self.path_home:
            self.path_home = nx.shortest_path(env_graph, self.position, (0, 0))

        return True  # Ant survives

# Pheromone Diffusion using Convolution
def diffuse_pheromones(pheromone_grid):
    kernel = np.array([[0.05, 0.1, 0.05],
                       [0.1,  0.4, 0.1],
                       [0.05, 0.1, 0.05]])
    for i in range(3):  # For each pheromone type
        pheromone_grid[:,:,i] = np.convolve2d(pheromone_grid[:,:,i], kernel, mode='same', boundary='wrap')

# Genetic Algorithm
def crossover(parent1, parent2):
    child = {}
    for key in parent1.keys():
        if random.random() < 0.5:
            child[key] = parent1[key]
        else:
            child[key] = parent2[key]
    return child

def mutate(genome):
    for key in genome.keys():
        if random.random() < MUTATION_RATE:
            genome[key] += random.uniform(-0.1, 0.1)
            genome[key] = max(0, min(1, genome[key]))
    return genome

# Simulation Loop
def simulate(ants):
    global pheromone_grid
    food_collected = 0
    for ant in ants:
        if ant.update(pheromone_grid, ants):
            if ant.position == (0, 0) and not ant.carrying_food:
                food_collected += 1

    pheromone_grid *= (1 - PHEROMONE_DECAY_RATE)
    diffuse_pheromones(pheromone_grid)

    # Genetic Algorithm
    if len(ants) > MAX_ANTS:
        ants.sort(key=lambda x: x.energy, reverse=True)
        survivors = ants[:MAX_ANTS//2]
        new_ants = []
        while len(new_ants) < MAX_ANTS//2:
            parent1, parent2 = random.sample(survivors, 2)
            child_genome = crossover(parent1.genome, parent2.genome)
            child_genome = mutate(child_genome)
            new_ant = Ant((random.randint(0, GRID_SIZE-1), random.randint(0, GRID_SIZE-1)), child_genome)
            new_ants.append(new_ant)
        ants = survivors + new_ants
    
    return ants, food_collected

# Clustering for strategic analysis
def analyze_ant_clusters(ants):
    positions = np.array([ant.position for ant in ants])
    kmeans = KMeans(n_clusters=3)
    kmeans.fit(positions)
    return kmeans.cluster_centers_

# Visualization Functions
def plot_environment(pheromone_grid, ants, cluster_centers):
    fig, ax = plt.subplots(figsize=(10, 10))
    ax.imshow(np.sum(pheromone_grid, axis=2), cmap='viridis', alpha=0.7)
    
    for ant in ants:
        color = 'blue' if ant.role == 'explorer' else 'red' if ant.role == 'carrier' else 'green'
        ax.plot(ant.position[1], ant.position[0], 'o', color=color, markersize=4)
    
    for food_x, food_y in FOOD_SOURCES:
        ax.plot(food_y, food_x, 'go', markersize=10)
    
    for obstacle_x, obstacle_y in OBSTACLES:
        ax.plot(obstacle_y, obstacle_x, 'ro', markersize=10)
    
    for center in cluster_centers:
        ax.plot(center[1], center[0], 'mo', markersize=15, alpha=0.7)
    
    ax.set_xlim([0, GRID_SIZE])
    ax.set_ylim([GRID_SIZE, 0])
    return fig

# Streamlit App
st.title("Advanced Ant Hivemind Simulation")

# Sidebar controls
st.sidebar.header("Simulation Parameters")
num_ants = st.sidebar.slider("Number of Ants", 10, MAX_ANTS, 50)
exploration_rate = st.sidebar.slider("Exploration Rate", 0.0, 1.0, 0.2)
learning_rate = st.sidebar.slider("Learning Rate", 0.0, 1.0, 0.1)
discount_factor = st.sidebar.slider("Discount Factor", 0.0, 1.0, 0.9)

# Initialize ants
ants = [Ant((random.randint(0, GRID_SIZE-1), random.randint(0, GRID_SIZE-1)), 
            {'exploration_rate': exploration_rate, 
             'learning_rate': learning_rate, 
             'discount_factor': discount_factor}) 
        for _ in range(num_ants)]

# Simulation control
start_simulation = st.sidebar.button("Start Simulation")
stop_simulation = st.sidebar.button("Stop Simulation")
reset_simulation = st.sidebar.button("Reset Simulation")

# Main simulation loop
if start_simulation:
    total_food_collected = 0
    iterations = 0
    cluster_centers = np.array([[0, 0], [0, 0], [0, 0]])
    
    progress_bar = st.progress(0)
    stats_placeholder = st.empty()
    plot_placeholder = st.empty()
    
    while not stop_simulation:
        ants, food_collected = simulate(ants)
        total_food_collected += food_collected
        iterations += 1
        
        if iterations % 10 == 0:
            cluster_centers = analyze_ant_clusters(ants)
        
        if iterations % 5 == 0:
            progress_bar.progress(min(iterations / 1000, 1.0))
            stats_placeholder.write(f"Iterations: {iterations}, Total Food Collected: {total_food_collected}")
            fig = plot_environment(pheromone_grid, ants, cluster_centers)
            plot_placeholder.pyplot(fig)
            plt.close(fig)

if reset_simulation:
    pheromone_grid = np.zeros((GRID_SIZE, GRID_SIZE, 3))
    ants = [Ant((random.randint(0, GRID_SIZE-1), random.randint(0, GRID_SIZE-1)), 
                {'exploration_rate': exploration_rate, 
                 'learning_rate': learning_rate, 
                 'discount_factor': discount_factor}) 
            for _ in range(num_ants)]

# Display final statistics
st.write("## Final Statistics")
st.write(f"Total Food Collected: {total_food_collected}")
st.write(f"Average Food per Iteration: {total_food_collected / iterations if iterations > 0 else 0}")

# Display heatmap of pheromone concentration
st.write("## Pheromone Concentration Heatmap")
fig, ax = plt.subplots(figsize=(10, 10))
heatmap = ax.imshow(np.sum(pheromone_grid, axis=2), cmap='hot', interpolation='nearest')
plt.colorbar(heatmap)
st.pyplot(fig)

# Display ant role distribution
roles = [ant.role for ant in ants]
role_counts = {role: roles.count(role) for role in set(roles)}
st.write("## Ant Role Distribution")
st.bar_chart(role_counts)

# Display network graph of ant communication
st.write("## Ant Communication Network")
G = nx.Graph()
for ant in ants:
    G.add_node(ant.position)
    for nearby_ant in ant.nearby_ants:
        G.add_edge(ant.position, nearby_ant.position)

fig, ax = plt.subplots(figsize=(10, 10))
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=False, node_size=30, node_color='skyblue', edge_color='gray', ax=ax)
st.pyplot(fig)