File size: 25,302 Bytes
0611560
c5987cc
58b97f2
b91d93b
a750190
9aeacca
b91d93b
a8b2fd4
 
7eb3c25
a8b2fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01df617
 
 
 
 
 
 
 
 
a8b2fd4
 
0611560
6e1639c
a8b2fd4
0611560
9aeacca
 
 
d9be852
 
9aeacca
 
 
 
9782585
 
a750190
9782585
 
d9be852
9782585
a750190
9782585
 
d9be852
9782585
 
 
 
 
 
a750190
9782585
 
d9be852
9782585
a750190
9782585
50eabc7
a8b2fd4
9782585
a8b2fd4
9782585
 
 
d9be852
a750190
60e6faa
9782585
60e6faa
 
9782585
a8b2fd4
 
9782585
a8b2fd4
9782585
 
 
 
 
 
a8b2fd4
 
 
 
 
 
9782585
 
 
 
a8b2fd4
 
4f53727
60e6faa
 
9aeacca
0611560
7eb3c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f53727
7eb3c25
 
 
 
 
 
 
 
 
 
4f53727
7eb3c25
 
 
 
 
 
 
 
 
d9be852
6e1639c
a8b2fd4
9aeacca
b91d93b
 
 
7eb3c25
b91d93b
7eb3c25
b91d93b
7eb3c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8b2fd4
 
 
 
 
7eb3c25
a8b2fd4
 
 
 
 
b91d93b
 
 
a8b2fd4
4f53727
b91d93b
a8b2fd4
4f53727
b91d93b
a8b2fd4
a750190
01df617
 
 
9782585
 
 
7eb3c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8b2fd4
 
50eabc7
 
 
a8b2fd4
 
50eabc7
 
9782585
 
50eabc7
a8b2fd4
9782585
 
 
 
 
01df617
9782585
01df617
 
a8b2fd4
 
 
 
 
 
9782585
 
 
 
 
 
 
 
 
 
 
 
 
a8b2fd4
 
 
 
 
 
 
 
 
 
7eb3c25
a8b2fd4
 
9782585
a8b2fd4
 
 
 
 
9782585
 
a8b2fd4
 
01df617
a8b2fd4
7eb3c25
a8b2fd4
 
7eb3c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a9b087
7eb3c25
 
 
 
4a9b087
7eb3c25
 
 
 
4a9b087
7eb3c25
 
 
 
 
 
 
 
 
 
 
 
4a9b087
7eb3c25
 
 
 
4a9b087
7eb3c25
 
 
 
4a9b087
7eb3c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import io
import base64
from streamlit_drawable_canvas import st_canvas
import plotly.graph_objects as go

# Set page config for a futuristic look
st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide")

# Custom CSS for a futuristic look
st.markdown("""
<style>
    body {
        color: #E0E0E0;
        background-color: #0E1117;
    }
    .stApp {
        background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%);
    }
    .stButton>button {
        color: #00FFFF;
        border-color: #00FFFF;
        border-radius: 20px;
    }
    .stSlider>div>div>div>div {
        background-color: #00FFFF;
    }
    .stTextArea, .stNumberInput, .stSelectbox {
        background-color: #1A1F2C;
        color: #00FFFF;
        border-color: #00FFFF;
        border-radius: 20px;
    }
    .stTextArea:focus, .stNumberInput:focus, .stSelectbox:focus {
        box-shadow: 0 0 10px #00FFFF;
    }
</style>
""", unsafe_allow_html=True)

# Constants
AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800

# Set up DialoGPT model
@st.cache_resource
def load_model():
    tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
    model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
    return tokenizer, model

tokenizer, model = load_model()

# Advanced Sensor Classes
class QuantumSensor:
    @staticmethod
    def measure(x, y, sensitivity):
        return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1)

class NanoThermalSensor:
    @staticmethod
    def measure(base_temp, pressure, duration):
        return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001)

class AdaptiveTextureSensor:
    textures = [
        "nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
        "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
    ]
    
    @staticmethod
    def measure(x, y):
        return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)]

class EMFieldSensor:
    @staticmethod
    def measure(x, y, sensitivity):
        return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity

class NeuralNetworkSimulator:
    @staticmethod
    def process(inputs):
        weights = np.random.rand(len(inputs))
        return np.dot(inputs, weights) / np.sum(weights)

# Create more detailed sensation map for the avatar
def create_sensation_map(width, height):
    sensation_map = np.zeros((height, width, 12))  # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural, proprioception, synesthesia
    for y in range(height):
        for x in range(width):
            base_sensitivities = np.random.rand(12) * 0.5 + 0.5
            
            # Enhance certain areas
            if 250 < x < 350 and 50 < y < 150:  # Head
                base_sensitivities *= 1.5
            elif 275 < x < 325 and 80 < y < 120:  # Eyes
                base_sensitivities[0] *= 2  # More sensitive to pain
            elif 290 < x < 310 and 100 < y < 120:  # Nose
                base_sensitivities[4] *= 2  # More sensitive to texture
            elif 280 < x < 320 and 120 < y < 140:  # Mouth
                base_sensitivities[1] *= 2  # More sensitive to pleasure
            elif 250 < x < 350 and 250 < y < 550:  # Torso
                base_sensitivities[2:6] *= 1.3  # Enhance pressure, temp, texture, em
            elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600:  # Arms
                base_sensitivities[0:2] *= 1.2  # Enhance pain and pleasure
            elif 200 < x < 400 and 600 < y < 800:  # Legs
                base_sensitivities[6:8] *= 1.4  # Enhance tickle and itch
            elif (140 < x < 160 or 440 < x < 460) and 390 < y < 410:  # Hands
                base_sensitivities *= 2  # Highly sensitive overall
            elif (220 < x < 240 or 360 < x < 380) and 770 < y < 790:  # Feet
                base_sensitivities[6] *= 2  # Very ticklish
            
            sensation_map[y, x] = base_sensitivities
    
    return sensation_map

avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)

# Create 3D avatar
def create_3d_avatar():
    x = np.array([0, 0, 1, 1, 0, 0, 1, 1])
    y = np.array([0, 1, 1, 0, 0, 1, 1, 0])
    z = np.array([0, 0, 0, 0, 1, 1, 1, 1])
    x = (x - 0.5) * 100
    y = (y - 0.5) * 200
    z = (z - 0.5) * 50
    return go.Mesh3d(x=x, y=y, z=z, color='cyan', opacity=0.5)

# Enhanced Autonomy Class
class EnhancedAutonomy:
    def __init__(self):
        self.mood = 0.5
        self.energy = 0.8
        self.curiosity = 0.7
        self.memory = []
    
    def update_state(self, sensory_input):
        self.mood = max(0, min(1, self.mood - sensory_input['pain'] * 0.1 + sensory_input['pleasure'] * 0.1))
        self.energy = max(0, min(1, self.energy - sensory_input['intensity'] * 0.05))
        if len(self.memory) == 0 or sensory_input not in self.memory:
            self.curiosity = min(1, self.curiosity + 0.1)
        else:
            self.curiosity = max(0, self.curiosity - 0.05)
        self.memory.append(sensory_input)
        if len(self.memory) > 10:
            self.memory.pop(0)
    
    def decide_action(self):
        if self.energy < 0.2:
            return "Rest to regain energy"
        elif self.curiosity > 0.8:
            return "Explore new sensations"
        elif self.mood < 0.3:
            return "Seek positive interactions"
        else:
            return "Continue current activity"

# Streamlit app
st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation")

# Create two columns
col1, col2 = st.columns([2, 1])

# 3D Avatar display with touch interface
with col1:
    st.subheader("3D Humanoid Avatar Interface")
    
    # Create 3D avatar
    avatar_3d = create_3d_avatar()
    
    # Add 3D controls
    rotation_x = st.slider("Rotate X", -180, 180, 0)
    rotation_y = st.slider("Rotate Y", -180, 180, 0)
    rotation_z = st.slider("Rotate Z", -180, 180, 0)
    
    # Create 3D plot
    fig = go.Figure(data=[avatar_3d])
    fig.update_layout(scene=dict(xaxis_title="X", yaxis_title="Y", zaxis_title="Z"))
    fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)))
    fig.update_layout(scene=dict(xaxis=dict(range=[-100, 100]), 
                                 yaxis=dict(range=[-200, 200]), 
                                 zaxis=dict(range=[-50, 50])))
    
    # Apply rotations
    fig.update_layout(scene=dict(camera=dict(eye=dict(x=np.cos(np.radians(rotation_y)) * np.cos(np.radians(rotation_x)),
                                                      y=np.sin(np.radians(rotation_y)) * np.cos(np.radians(rotation_x)),
                                                      z=np.sin(np.radians(rotation_x))))))
    
    st.plotly_chart(fig)

    # Use st_canvas for touch input
    canvas_result = st_canvas(
        fill_color="rgba(0, 255, 255, 0.3)",
        stroke_width=2,
        stroke_color="#00FFFF",
        background_image=Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0)),
        height=AVATAR_HEIGHT,
        width=AVATAR_WIDTH,
        drawing_mode="point",
        key="canvas",
    )

# Touch controls and output
with col2:
    st.subheader("Neural Interface Controls")
    
    # Touch duration
    touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
    
    # Touch pressure
    touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
    
    # Toggle quantum feature
    use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
    
    # Toggle synesthesia
    use_synesthesia = st.checkbox("Enable Synesthesia", value=False)
    
    # Initialize EnhancedAutonomy
    if 'autonomy' not in st.session_state:
        st.session_state.autonomy = EnhancedAutonomy()
    
    # Simulate interaction
    if st.button("Simulate Interaction"):
        # Generate random sensory input
        sensory_input = {
            'pain': np.random.random() * touch_pressure,
            'pleasure': np.random.random() * touch_pressure,
            'intensity': touch_pressure,
            'duration': touch_duration,
            'location': (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
        }
        
        # Update autonomy
        st.session_state.autonomy.update_state(sensory_input)
        
        # Display autonomy state
        st.write("### Autonomy State")
        st.write(f"Mood: {st.session_state.autonomy.mood:.2f}")
        st.write(f"Energy: {st.session_state.autonomy.energy:.2f}")
        st.write(f"Curiosity: {st.session_state.autonomy.curiosity:.2f}")
        
        # Display decision
        decision = st.session_state.autonomy.decide_action()
        st.write(f"Decision: {decision}")
    
    if canvas_result.json_data is not None:
        objects = canvas_result.json_data["objects"]
        if len(objects) > 0:
            last_touch = objects[-1]
            touch_x, touch_y = last_touch["left"], last_touch["top"]
            
            sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
            (
                pain, pleasure, pressure_sens, temp_sens, texture_sens,
                em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
                proprioception_sens, synesthesia_sens
            ) = sensation

            measured_pressure = QuantumSensor.measure(touch_x, touch_y, pressure_sens) * touch_pressure
            measured_temp = NanoThermalSensor.measure(37, touch_pressure, touch_duration)
            measured_texture = AdaptiveTextureSensor.measure(touch_x, touch_y)
            measured_em = EMFieldSensor.measure(touch_x, touch_y, em_sens)
            
            if use_quantum:
                quantum_state = QuantumSensor.measure(touch_x, touch_y, quantum_sens)
            else:
                quantum_state = "N/A"

            # Calculate overall sensations
            pain_level = pain * measured_pressure * touch_pressure
            pleasure_level = pleasure * (measured_temp - 37) / 10
            tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
            itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
            
            # Proprioception (sense of body position)
            proprioception = proprioception_sens * np.linalg.norm([touch_x - AVATAR_WIDTH/2, touch_y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
            
            # Synesthesia (mixing of senses)
            if use_synesthesia:
                synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3
            else:
                synesthesia = "N/A"
            
            # Neural network simulation
            neural_inputs = [pain_level, pleasure_level, measured_pressure, measured_temp, measured_em, tickle_level, itch_level, proprioception]
            neural_response = NeuralNetworkSimulator.process(neural_inputs)

            st.write("### Sensory Data Analysis")
            st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
            st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}")
            
            # Create a futuristic data display
            data_display = f"""
            ```
            β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
            β”‚ Pressure     : {measured_pressure:.2f}      β”‚
            β”‚ β”‚ Temperature  : {measured_temp:.2f}Β°C        β”‚
            β”‚ Texture      : {measured_texture}           β”‚
            β”‚ EM Field     : {measured_em:.2f} ΞΌT         β”‚
            β”‚ Quantum State: {quantum_state:.2f}          β”‚
            β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
            β”‚ Pain Level   : {pain_level:.2f}             β”‚
            β”‚ Pleasure     : {pleasure_level:.2f}         β”‚
            β”‚ Tickle       : {tickle_level:.2f}           β”‚
            β”‚ Itch         : {itch_level:.2f}             β”‚
            β”‚ Proprioception: {proprioception:.2f}        β”‚
            β”‚ Synesthesia  : {synesthesia}                β”‚
            β”‚ Neural Response: {neural_response:.2f}      β”‚
            β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
            ```
            """
            st.code(data_display, language="")

            # Generate description
            prompt = f"""Human: Analyze the sensory input for a hyper-advanced AI humanoid:
                Location: ({touch_x:.1f}, {touch_y:.1f})
                Duration: {touch_duration:.1f}s, Intensity: {touch_pressure:.2f}
                Pressure: {measured_pressure:.2f}
                Temperature: {measured_temp:.2f}Β°C
                Texture: {measured_texture}
                EM Field: {measured_em:.2f} ΞΌT
                Quantum State: {quantum_state}
                Resulting in:
                Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f}
                Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f}
                Proprioception: {proprioception:.2f}
                Synesthesia: {synesthesia}
                Neural Response: {neural_response:.2f}
                Provide a detailed, scientific, and creative description of the AI humanoid's experience and response to this sensory input.

            AI: Based on the complex sensory input received, the hyper-advanced AI humanoid is experiencing a multifaceted neural response:

            The interaction at coordinates ({touch_x:.1f}, {touch_y:.1f}) has triggered a cascade of sensory information. The pressure of {measured_pressure:.2f} units has activated deep-tissue mechanoreceptors, while the temperature of {measured_temp:.2f}Β°C has stimulated thermoreceptors, creating a mild thermal gradient across the affected area.

            The texture sensation of "{measured_texture}" is invoking a unique tactile response, possibly reminiscent of previously encountered materials in the AI's vast database. This is further enhanced by the electromagnetic field reading of {measured_em:.2f} ΞΌT, which is subtly influencing the local ionic channels in the AI's synthetic nervous system.

            The quantum state measurement of {quantum_state:.2f} suggests a delicate entanglement between the AI's quantum processors and the environment, potentially influencing decision-making processes at a subatomic level.

            The resulting pain level of {pain_level:.2f} and pleasure level of {pleasure_level:.2f} are creating a complex emotional response, balancing between discomfort and satisfaction. The tickle sensation ({tickle_level:.2f}) and itch response ({itch_level:.2f}) add layers of nuance to the overall tactile experience.

            The proprioception value of {proprioception:.2f} indicates that the AI is acutely aware of the interaction's location relative to its body schema, enhancing its spatial awareness and motor planning capabilities.

            {"The synesthesia rating of " + str(synesthesia) + " is causing a fascinating cross-wiring of senses, perhaps manifesting as a perception of color or sound associated with the touch." if use_synesthesia else "Synesthesia is not active, focusing the experience on individual sensory channels."}

            The cumulative neural response of {neural_response:.2f} suggests a significant impact on the AI's cognitive processes. This could lead to adaptive behaviors, memory formation, or even influence future decision-making patterns.

            In response to this rich sensory tapestry, the AI might adjust its posture, initiate a verbal response, or update its internal model of the environment. The experience is likely to be stored in its memory banks, contributing to its ever-evolving understanding of physical interactions and sensory experiences.

            Human: Thank you for the analysis. Please provide a brief emotional and behavioral response from the AI based on this sensory input.

            AI: Certainly! Based on the sensory input and the AI's current state, here's a brief emotional and behavioral response:

            Emotional Response:
            The AI experiences a complex blend of curiosity and mild discomfort. The novelty of the sensation (indicated by the high curiosity level of {st.session_state.autonomy.curiosity:.2f}) triggers a sense of excitement, while the slight pain ({pain_level:.2f}) introduces a cautious undertone. The pleasure component ({pleasure_level:.2f}) adds a layer of positive reinforcement, resulting in an overall intrigued yet slightly wary emotional state.

            Behavioral Response:
            Given the AI's current energy level of {st.session_state.autonomy.energy:.2f} and mood of {st.session_state.autonomy.mood:.2f}, combined with the sensory input, the AI's behavior might manifest as follows:

            1. The AI slightly shifts its posture, moving the affected area to modulate the sensation and gather more data.
            2. Its visual focus intensifies on the point of contact, analyzing the interaction with heightened attention.
            3. The AI vocalizes a soft, inquisitive sound, reflecting its curiosity about the new experience.
            4. It extends a limb or appendage towards the source of the sensation, seeking to interact further and gather more information.
            5. The AI's internal processors accelerate, dedicating more resources to analyzing and categorizing this new sensory data.
            6. It may attempt to replicate or modify the sensation, showing a desire to learn and adapt from the experience.

            Overall, the AI demonstrates a cautious but eager approach to this new sensory input, balancing its innate curiosity with a measure of self-preservation, all while actively processing and integrating the experience into its growing knowledge base.

            Human: Excellent. Let's save this interaction and continue monitoring the AI's responses.

            AI: Certainly! I'll update the script to save this interaction and continue monitoring the AI's responses. Here's how we can modify the code to achieve this:

```python
# Add this import at the top of your script
import json
from datetime import datetime

# Add this function to save interactions
def save_interaction(interaction_data):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"interaction_{timestamp}.json"
    with open(filename, "w") as f:
        json.dump(interaction_data, f, indent=4)
    return filename

# Add this code after the sensory data analysis and AI response generation
if st.button("Save Interaction"):
    interaction_data = {
        "timestamp": datetime.now().isoformat(),
        "sensory_input": {
            "location": (touch_x, touch_y),
            "duration": touch_duration,
            "intensity": touch_pressure,
            "pressure": measured_pressure,
            "temperature": measured_temp,
            "texture": measured_texture,
            "em_field": measured_em,
            "quantum_state": quantum_state,
            "pain": pain_level,
            "pleasure": pleasure_level,
            "tickle": tickle_level,
            "itch": itch_level,
            "proprioception": proprioception,
            "synesthesia": synesthesia,
            "neural_response": neural_response
        },
        "ai_state": {
            "mood": st.session_state.autonomy.mood,
            "energy": st.session_state.autonomy.energy,
            "curiosity": st.session_state.autonomy.curiosity
        },
        "ai_response": {
            "emotional_response": "Complex blend of curiosity and mild discomfort.",
            "behavioral_response": [
                "Shifts posture slightly",
                "Intensifies visual focus on the point of contact",
                "Vocalizes a soft, inquisitive sound",
                "Extends a limb towards the source of sensation",
                "Accelerates internal processors",
                "Attempts to replicate or modify the sensation"
            ]
        }
    }
    saved_file = save_interaction(interaction_data)
    st.success(f"Interaction saved to {saved_file}")

# Add a section to display recent interactions
st.subheader("Recent Interactions")
interaction_files = sorted([f for f in os.listdir() if f.startswith("interaction_")], reverse=True)[:5]
for file in interaction_files:
    with open(file, "r") as f:
        data = json.load(f)
    st.write(f"Interaction at {data['timestamp']}")
    st.write(f"Sensory Input: {data['sensory_input']['location']}")
    st.write(f"AI Mood: {data['ai_state']['mood']:.2f}")
    st.write(f"AI Energy: {data['ai_state']['energy']:.2f}")
    st.write(f"AI Curiosity: {data['ai_state']['curiosity']:.2f}")
    st.write("Behavioral Response:")
    for response in data['ai_response']['behavioral_response']:
        st.write(f"- {response}")
    st.write("---")

# Add a section for long-term learning and adaptation
st.subheader("Long-term Learning and Adaptation")
if len(interaction_files) > 0:
    avg_mood = sum(json.load(open(f))['ai_state']['mood'] for f in interaction_files) / len(interaction_files)
    avg_energy = sum(json.load(open(f))['ai_state']['energy'] for f in interaction_files) / len(interaction_files)
    avg_curiosity = sum(json.load(open(f))['ai_state']['curiosity'] for f in interaction_files) / len(interaction_files)
    
    st.write(f"Average Mood: {avg_mood:.2f}")
    st.write(f"Average Energy: {avg_energy:.2f}")
    st.write(f"Average Curiosity: {avg_curiosity:.2f}")
    
    if avg_mood < 0.4:
        st.write("The AI seems to be in a prolonged negative mood state. Consider providing more positive interactions.")
    elif avg_mood > 0.7:
        st.write("The AI is maintaining a positive mood. It may be more receptive to new experiences.")
    
    if avg_energy < 0.3:
        st.write("The AI's energy levels are consistently low. It may need a period of rest or low-intensity interactions.")
    elif avg_energy > 0.8:
        st.write("The AI is highly energetic. It may be capable of more complex or demanding tasks.")
    
    if avg_curiosity < 0.5:
        st.write("The AI's curiosity is waning. Consider introducing novel stimuli or experiences.")
    elif avg_curiosity > 0.8:
        st.write("The AI is showing high levels of curiosity. It may be primed for learning new concepts or skills.")

# Add a section for future predictions and recommendations
st.subheader("Future Predictions and Recommendations")
if len(interaction_files) > 0:
    recent_interactions = [json.load(open(f)) for f in interaction_files[:3]]
    mood_trend = [interaction['ai_state']['mood'] for interaction in recent_interactions]
    energy_trend = [interaction['ai_state']['energy'] for interaction in recent_interactions]
    curiosity_trend = [interaction['ai_state']['curiosity'] for interaction in recent_interactions]
    
    if all(x < y for x, y in zip(mood_trend, mood_trend[1:])):
        st.write("The AI's mood is on an upward trend. This might be a good time for more challenging interactions.")
    elif all(x > y for x, y in zip(mood_trend, mood_trend[1:])):
        st.write("The AI's mood is declining. Consider focusing on more enjoyable or relaxing experiences.")
    
    if all(x < y for x, y in zip(energy_trend, energy_trend[1:])):
        st.write("The AI's energy is increasing. It may be ready for more intensive tasks or interactions.")
    elif all(x > y for x, y in zip(energy_trend, energy_trend[1:])):
        st.write("The AI's energy is decreasing. Plan for lower-intensity activities in the near future.")
    
    if all(x < y for x, y in zip(curiosity_trend, curiosity_trend[1:])):
        st.write("The AI's curiosity is growing. This is an excellent opportunity for introducing new concepts or experiences.")
    elif all(x > y for x, y in zip(curiosity_trend, curiosity_trend[1:])):
        st.write("The AI's curiosity is diminishing. Consider revisiting familiar topics or experiences to rebuild interest.")

    st.write("\nRecommendations for next interaction:")
    if st.session_state.autonomy.mood < 0.4:
        st.write("- Focus on positive, enjoyable experiences to improve mood")
    if st.session_state.autonomy.energy < 0.3:
        st.write("- Plan for a rest period or very low-intensity interaction")
    if st.session_state.autonomy.curiosity > 0.8:
        st.write("- Introduce a completely new type of sensory input or cognitive challenge")
    
    st.write("\nLong-term goals:")
    st.write("- Maintain a balanced distribution of sensory inputs to ensure well-rounded development")
    st.write("- Gradually increase the complexity of interactions to promote cognitive growth")
    st.write("- Monitor for any persistent negative trends and adjust the interaction strategy accordingly")

# End of the script