Spaces:
Sleeping
Sleeping
File size: 25,302 Bytes
0611560 c5987cc 58b97f2 b91d93b a750190 9aeacca b91d93b a8b2fd4 7eb3c25 a8b2fd4 01df617 a8b2fd4 0611560 6e1639c a8b2fd4 0611560 9aeacca d9be852 9aeacca 9782585 a750190 9782585 d9be852 9782585 a750190 9782585 d9be852 9782585 a750190 9782585 d9be852 9782585 a750190 9782585 50eabc7 a8b2fd4 9782585 a8b2fd4 9782585 d9be852 a750190 60e6faa 9782585 60e6faa 9782585 a8b2fd4 9782585 a8b2fd4 9782585 a8b2fd4 9782585 a8b2fd4 4f53727 60e6faa 9aeacca 0611560 7eb3c25 4f53727 7eb3c25 4f53727 7eb3c25 d9be852 6e1639c a8b2fd4 9aeacca b91d93b 7eb3c25 b91d93b 7eb3c25 b91d93b 7eb3c25 a8b2fd4 7eb3c25 a8b2fd4 b91d93b a8b2fd4 4f53727 b91d93b a8b2fd4 4f53727 b91d93b a8b2fd4 a750190 01df617 9782585 7eb3c25 a8b2fd4 50eabc7 a8b2fd4 50eabc7 9782585 50eabc7 a8b2fd4 9782585 01df617 9782585 01df617 a8b2fd4 9782585 a8b2fd4 7eb3c25 a8b2fd4 9782585 a8b2fd4 9782585 a8b2fd4 01df617 a8b2fd4 7eb3c25 a8b2fd4 7eb3c25 4a9b087 7eb3c25 4a9b087 7eb3c25 4a9b087 7eb3c25 4a9b087 7eb3c25 4a9b087 7eb3c25 4a9b087 7eb3c25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import io
import base64
from streamlit_drawable_canvas import st_canvas
import plotly.graph_objects as go
# Set page config for a futuristic look
st.set_page_config(page_title="NeuraSense AI", page_icon="π§ ", layout="wide")
# Custom CSS for a futuristic look
st.markdown("""
<style>
body {
color: #E0E0E0;
background-color: #0E1117;
}
.stApp {
background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%);
}
.stButton>button {
color: #00FFFF;
border-color: #00FFFF;
border-radius: 20px;
}
.stSlider>div>div>div>div {
background-color: #00FFFF;
}
.stTextArea, .stNumberInput, .stSelectbox {
background-color: #1A1F2C;
color: #00FFFF;
border-color: #00FFFF;
border-radius: 20px;
}
.stTextArea:focus, .stNumberInput:focus, .stSelectbox:focus {
box-shadow: 0 0 10px #00FFFF;
}
</style>
""", unsafe_allow_html=True)
# Constants
AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800
# Set up DialoGPT model
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
return tokenizer, model
tokenizer, model = load_model()
# Advanced Sensor Classes
class QuantumSensor:
@staticmethod
def measure(x, y, sensitivity):
return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1)
class NanoThermalSensor:
@staticmethod
def measure(base_temp, pressure, duration):
return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001)
class AdaptiveTextureSensor:
textures = [
"nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
"graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
]
@staticmethod
def measure(x, y):
return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)]
class EMFieldSensor:
@staticmethod
def measure(x, y, sensitivity):
return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity
class NeuralNetworkSimulator:
@staticmethod
def process(inputs):
weights = np.random.rand(len(inputs))
return np.dot(inputs, weights) / np.sum(weights)
# Create more detailed sensation map for the avatar
def create_sensation_map(width, height):
sensation_map = np.zeros((height, width, 12)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural, proprioception, synesthesia
for y in range(height):
for x in range(width):
base_sensitivities = np.random.rand(12) * 0.5 + 0.5
# Enhance certain areas
if 250 < x < 350 and 50 < y < 150: # Head
base_sensitivities *= 1.5
elif 275 < x < 325 and 80 < y < 120: # Eyes
base_sensitivities[0] *= 2 # More sensitive to pain
elif 290 < x < 310 and 100 < y < 120: # Nose
base_sensitivities[4] *= 2 # More sensitive to texture
elif 280 < x < 320 and 120 < y < 140: # Mouth
base_sensitivities[1] *= 2 # More sensitive to pleasure
elif 250 < x < 350 and 250 < y < 550: # Torso
base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em
elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms
base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure
elif 200 < x < 400 and 600 < y < 800: # Legs
base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch
elif (140 < x < 160 or 440 < x < 460) and 390 < y < 410: # Hands
base_sensitivities *= 2 # Highly sensitive overall
elif (220 < x < 240 or 360 < x < 380) and 770 < y < 790: # Feet
base_sensitivities[6] *= 2 # Very ticklish
sensation_map[y, x] = base_sensitivities
return sensation_map
avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)
# Create 3D avatar
def create_3d_avatar():
x = np.array([0, 0, 1, 1, 0, 0, 1, 1])
y = np.array([0, 1, 1, 0, 0, 1, 1, 0])
z = np.array([0, 0, 0, 0, 1, 1, 1, 1])
x = (x - 0.5) * 100
y = (y - 0.5) * 200
z = (z - 0.5) * 50
return go.Mesh3d(x=x, y=y, z=z, color='cyan', opacity=0.5)
# Enhanced Autonomy Class
class EnhancedAutonomy:
def __init__(self):
self.mood = 0.5
self.energy = 0.8
self.curiosity = 0.7
self.memory = []
def update_state(self, sensory_input):
self.mood = max(0, min(1, self.mood - sensory_input['pain'] * 0.1 + sensory_input['pleasure'] * 0.1))
self.energy = max(0, min(1, self.energy - sensory_input['intensity'] * 0.05))
if len(self.memory) == 0 or sensory_input not in self.memory:
self.curiosity = min(1, self.curiosity + 0.1)
else:
self.curiosity = max(0, self.curiosity - 0.05)
self.memory.append(sensory_input)
if len(self.memory) > 10:
self.memory.pop(0)
def decide_action(self):
if self.energy < 0.2:
return "Rest to regain energy"
elif self.curiosity > 0.8:
return "Explore new sensations"
elif self.mood < 0.3:
return "Seek positive interactions"
else:
return "Continue current activity"
# Streamlit app
st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation")
# Create two columns
col1, col2 = st.columns([2, 1])
# 3D Avatar display with touch interface
with col1:
st.subheader("3D Humanoid Avatar Interface")
# Create 3D avatar
avatar_3d = create_3d_avatar()
# Add 3D controls
rotation_x = st.slider("Rotate X", -180, 180, 0)
rotation_y = st.slider("Rotate Y", -180, 180, 0)
rotation_z = st.slider("Rotate Z", -180, 180, 0)
# Create 3D plot
fig = go.Figure(data=[avatar_3d])
fig.update_layout(scene=dict(xaxis_title="X", yaxis_title="Y", zaxis_title="Z"))
fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)))
fig.update_layout(scene=dict(xaxis=dict(range=[-100, 100]),
yaxis=dict(range=[-200, 200]),
zaxis=dict(range=[-50, 50])))
# Apply rotations
fig.update_layout(scene=dict(camera=dict(eye=dict(x=np.cos(np.radians(rotation_y)) * np.cos(np.radians(rotation_x)),
y=np.sin(np.radians(rotation_y)) * np.cos(np.radians(rotation_x)),
z=np.sin(np.radians(rotation_x))))))
st.plotly_chart(fig)
# Use st_canvas for touch input
canvas_result = st_canvas(
fill_color="rgba(0, 255, 255, 0.3)",
stroke_width=2,
stroke_color="#00FFFF",
background_image=Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0)),
height=AVATAR_HEIGHT,
width=AVATAR_WIDTH,
drawing_mode="point",
key="canvas",
)
# Touch controls and output
with col2:
st.subheader("Neural Interface Controls")
# Touch duration
touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
# Touch pressure
touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
# Toggle quantum feature
use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
# Toggle synesthesia
use_synesthesia = st.checkbox("Enable Synesthesia", value=False)
# Initialize EnhancedAutonomy
if 'autonomy' not in st.session_state:
st.session_state.autonomy = EnhancedAutonomy()
# Simulate interaction
if st.button("Simulate Interaction"):
# Generate random sensory input
sensory_input = {
'pain': np.random.random() * touch_pressure,
'pleasure': np.random.random() * touch_pressure,
'intensity': touch_pressure,
'duration': touch_duration,
'location': (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
}
# Update autonomy
st.session_state.autonomy.update_state(sensory_input)
# Display autonomy state
st.write("### Autonomy State")
st.write(f"Mood: {st.session_state.autonomy.mood:.2f}")
st.write(f"Energy: {st.session_state.autonomy.energy:.2f}")
st.write(f"Curiosity: {st.session_state.autonomy.curiosity:.2f}")
# Display decision
decision = st.session_state.autonomy.decide_action()
st.write(f"Decision: {decision}")
if canvas_result.json_data is not None:
objects = canvas_result.json_data["objects"]
if len(objects) > 0:
last_touch = objects[-1]
touch_x, touch_y = last_touch["left"], last_touch["top"]
sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
(
pain, pleasure, pressure_sens, temp_sens, texture_sens,
em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
proprioception_sens, synesthesia_sens
) = sensation
measured_pressure = QuantumSensor.measure(touch_x, touch_y, pressure_sens) * touch_pressure
measured_temp = NanoThermalSensor.measure(37, touch_pressure, touch_duration)
measured_texture = AdaptiveTextureSensor.measure(touch_x, touch_y)
measured_em = EMFieldSensor.measure(touch_x, touch_y, em_sens)
if use_quantum:
quantum_state = QuantumSensor.measure(touch_x, touch_y, quantum_sens)
else:
quantum_state = "N/A"
# Calculate overall sensations
pain_level = pain * measured_pressure * touch_pressure
pleasure_level = pleasure * (measured_temp - 37) / 10
tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
# Proprioception (sense of body position)
proprioception = proprioception_sens * np.linalg.norm([touch_x - AVATAR_WIDTH/2, touch_y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
# Synesthesia (mixing of senses)
if use_synesthesia:
synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3
else:
synesthesia = "N/A"
# Neural network simulation
neural_inputs = [pain_level, pleasure_level, measured_pressure, measured_temp, measured_em, tickle_level, itch_level, proprioception]
neural_response = NeuralNetworkSimulator.process(neural_inputs)
st.write("### Sensory Data Analysis")
st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}")
# Create a futuristic data display
data_display = f"""
```
βββββββββββββββββββββββββββββββββββββββββββββββ
β Pressure : {measured_pressure:.2f} β
β β Temperature : {measured_temp:.2f}Β°C β
β Texture : {measured_texture} β
β EM Field : {measured_em:.2f} ΞΌT β
β Quantum State: {quantum_state:.2f} β
βββββββββββββββββββββββββββββββββββββββββββββββ€
β Pain Level : {pain_level:.2f} β
β Pleasure : {pleasure_level:.2f} β
β Tickle : {tickle_level:.2f} β
β Itch : {itch_level:.2f} β
β Proprioception: {proprioception:.2f} β
β Synesthesia : {synesthesia} β
β Neural Response: {neural_response:.2f} β
βββββββββββββββββββββββββββββββββββββββββββββββ
```
"""
st.code(data_display, language="")
# Generate description
prompt = f"""Human: Analyze the sensory input for a hyper-advanced AI humanoid:
Location: ({touch_x:.1f}, {touch_y:.1f})
Duration: {touch_duration:.1f}s, Intensity: {touch_pressure:.2f}
Pressure: {measured_pressure:.2f}
Temperature: {measured_temp:.2f}Β°C
Texture: {measured_texture}
EM Field: {measured_em:.2f} ΞΌT
Quantum State: {quantum_state}
Resulting in:
Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f}
Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f}
Proprioception: {proprioception:.2f}
Synesthesia: {synesthesia}
Neural Response: {neural_response:.2f}
Provide a detailed, scientific, and creative description of the AI humanoid's experience and response to this sensory input.
AI: Based on the complex sensory input received, the hyper-advanced AI humanoid is experiencing a multifaceted neural response:
The interaction at coordinates ({touch_x:.1f}, {touch_y:.1f}) has triggered a cascade of sensory information. The pressure of {measured_pressure:.2f} units has activated deep-tissue mechanoreceptors, while the temperature of {measured_temp:.2f}Β°C has stimulated thermoreceptors, creating a mild thermal gradient across the affected area.
The texture sensation of "{measured_texture}" is invoking a unique tactile response, possibly reminiscent of previously encountered materials in the AI's vast database. This is further enhanced by the electromagnetic field reading of {measured_em:.2f} ΞΌT, which is subtly influencing the local ionic channels in the AI's synthetic nervous system.
The quantum state measurement of {quantum_state:.2f} suggests a delicate entanglement between the AI's quantum processors and the environment, potentially influencing decision-making processes at a subatomic level.
The resulting pain level of {pain_level:.2f} and pleasure level of {pleasure_level:.2f} are creating a complex emotional response, balancing between discomfort and satisfaction. The tickle sensation ({tickle_level:.2f}) and itch response ({itch_level:.2f}) add layers of nuance to the overall tactile experience.
The proprioception value of {proprioception:.2f} indicates that the AI is acutely aware of the interaction's location relative to its body schema, enhancing its spatial awareness and motor planning capabilities.
{"The synesthesia rating of " + str(synesthesia) + " is causing a fascinating cross-wiring of senses, perhaps manifesting as a perception of color or sound associated with the touch." if use_synesthesia else "Synesthesia is not active, focusing the experience on individual sensory channels."}
The cumulative neural response of {neural_response:.2f} suggests a significant impact on the AI's cognitive processes. This could lead to adaptive behaviors, memory formation, or even influence future decision-making patterns.
In response to this rich sensory tapestry, the AI might adjust its posture, initiate a verbal response, or update its internal model of the environment. The experience is likely to be stored in its memory banks, contributing to its ever-evolving understanding of physical interactions and sensory experiences.
Human: Thank you for the analysis. Please provide a brief emotional and behavioral response from the AI based on this sensory input.
AI: Certainly! Based on the sensory input and the AI's current state, here's a brief emotional and behavioral response:
Emotional Response:
The AI experiences a complex blend of curiosity and mild discomfort. The novelty of the sensation (indicated by the high curiosity level of {st.session_state.autonomy.curiosity:.2f}) triggers a sense of excitement, while the slight pain ({pain_level:.2f}) introduces a cautious undertone. The pleasure component ({pleasure_level:.2f}) adds a layer of positive reinforcement, resulting in an overall intrigued yet slightly wary emotional state.
Behavioral Response:
Given the AI's current energy level of {st.session_state.autonomy.energy:.2f} and mood of {st.session_state.autonomy.mood:.2f}, combined with the sensory input, the AI's behavior might manifest as follows:
1. The AI slightly shifts its posture, moving the affected area to modulate the sensation and gather more data.
2. Its visual focus intensifies on the point of contact, analyzing the interaction with heightened attention.
3. The AI vocalizes a soft, inquisitive sound, reflecting its curiosity about the new experience.
4. It extends a limb or appendage towards the source of the sensation, seeking to interact further and gather more information.
5. The AI's internal processors accelerate, dedicating more resources to analyzing and categorizing this new sensory data.
6. It may attempt to replicate or modify the sensation, showing a desire to learn and adapt from the experience.
Overall, the AI demonstrates a cautious but eager approach to this new sensory input, balancing its innate curiosity with a measure of self-preservation, all while actively processing and integrating the experience into its growing knowledge base.
Human: Excellent. Let's save this interaction and continue monitoring the AI's responses.
AI: Certainly! I'll update the script to save this interaction and continue monitoring the AI's responses. Here's how we can modify the code to achieve this:
```python
# Add this import at the top of your script
import json
from datetime import datetime
# Add this function to save interactions
def save_interaction(interaction_data):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"interaction_{timestamp}.json"
with open(filename, "w") as f:
json.dump(interaction_data, f, indent=4)
return filename
# Add this code after the sensory data analysis and AI response generation
if st.button("Save Interaction"):
interaction_data = {
"timestamp": datetime.now().isoformat(),
"sensory_input": {
"location": (touch_x, touch_y),
"duration": touch_duration,
"intensity": touch_pressure,
"pressure": measured_pressure,
"temperature": measured_temp,
"texture": measured_texture,
"em_field": measured_em,
"quantum_state": quantum_state,
"pain": pain_level,
"pleasure": pleasure_level,
"tickle": tickle_level,
"itch": itch_level,
"proprioception": proprioception,
"synesthesia": synesthesia,
"neural_response": neural_response
},
"ai_state": {
"mood": st.session_state.autonomy.mood,
"energy": st.session_state.autonomy.energy,
"curiosity": st.session_state.autonomy.curiosity
},
"ai_response": {
"emotional_response": "Complex blend of curiosity and mild discomfort.",
"behavioral_response": [
"Shifts posture slightly",
"Intensifies visual focus on the point of contact",
"Vocalizes a soft, inquisitive sound",
"Extends a limb towards the source of sensation",
"Accelerates internal processors",
"Attempts to replicate or modify the sensation"
]
}
}
saved_file = save_interaction(interaction_data)
st.success(f"Interaction saved to {saved_file}")
# Add a section to display recent interactions
st.subheader("Recent Interactions")
interaction_files = sorted([f for f in os.listdir() if f.startswith("interaction_")], reverse=True)[:5]
for file in interaction_files:
with open(file, "r") as f:
data = json.load(f)
st.write(f"Interaction at {data['timestamp']}")
st.write(f"Sensory Input: {data['sensory_input']['location']}")
st.write(f"AI Mood: {data['ai_state']['mood']:.2f}")
st.write(f"AI Energy: {data['ai_state']['energy']:.2f}")
st.write(f"AI Curiosity: {data['ai_state']['curiosity']:.2f}")
st.write("Behavioral Response:")
for response in data['ai_response']['behavioral_response']:
st.write(f"- {response}")
st.write("---")
# Add a section for long-term learning and adaptation
st.subheader("Long-term Learning and Adaptation")
if len(interaction_files) > 0:
avg_mood = sum(json.load(open(f))['ai_state']['mood'] for f in interaction_files) / len(interaction_files)
avg_energy = sum(json.load(open(f))['ai_state']['energy'] for f in interaction_files) / len(interaction_files)
avg_curiosity = sum(json.load(open(f))['ai_state']['curiosity'] for f in interaction_files) / len(interaction_files)
st.write(f"Average Mood: {avg_mood:.2f}")
st.write(f"Average Energy: {avg_energy:.2f}")
st.write(f"Average Curiosity: {avg_curiosity:.2f}")
if avg_mood < 0.4:
st.write("The AI seems to be in a prolonged negative mood state. Consider providing more positive interactions.")
elif avg_mood > 0.7:
st.write("The AI is maintaining a positive mood. It may be more receptive to new experiences.")
if avg_energy < 0.3:
st.write("The AI's energy levels are consistently low. It may need a period of rest or low-intensity interactions.")
elif avg_energy > 0.8:
st.write("The AI is highly energetic. It may be capable of more complex or demanding tasks.")
if avg_curiosity < 0.5:
st.write("The AI's curiosity is waning. Consider introducing novel stimuli or experiences.")
elif avg_curiosity > 0.8:
st.write("The AI is showing high levels of curiosity. It may be primed for learning new concepts or skills.")
# Add a section for future predictions and recommendations
st.subheader("Future Predictions and Recommendations")
if len(interaction_files) > 0:
recent_interactions = [json.load(open(f)) for f in interaction_files[:3]]
mood_trend = [interaction['ai_state']['mood'] for interaction in recent_interactions]
energy_trend = [interaction['ai_state']['energy'] for interaction in recent_interactions]
curiosity_trend = [interaction['ai_state']['curiosity'] for interaction in recent_interactions]
if all(x < y for x, y in zip(mood_trend, mood_trend[1:])):
st.write("The AI's mood is on an upward trend. This might be a good time for more challenging interactions.")
elif all(x > y for x, y in zip(mood_trend, mood_trend[1:])):
st.write("The AI's mood is declining. Consider focusing on more enjoyable or relaxing experiences.")
if all(x < y for x, y in zip(energy_trend, energy_trend[1:])):
st.write("The AI's energy is increasing. It may be ready for more intensive tasks or interactions.")
elif all(x > y for x, y in zip(energy_trend, energy_trend[1:])):
st.write("The AI's energy is decreasing. Plan for lower-intensity activities in the near future.")
if all(x < y for x, y in zip(curiosity_trend, curiosity_trend[1:])):
st.write("The AI's curiosity is growing. This is an excellent opportunity for introducing new concepts or experiences.")
elif all(x > y for x, y in zip(curiosity_trend, curiosity_trend[1:])):
st.write("The AI's curiosity is diminishing. Consider revisiting familiar topics or experiences to rebuild interest.")
st.write("\nRecommendations for next interaction:")
if st.session_state.autonomy.mood < 0.4:
st.write("- Focus on positive, enjoyable experiences to improve mood")
if st.session_state.autonomy.energy < 0.3:
st.write("- Plan for a rest period or very low-intensity interaction")
if st.session_state.autonomy.curiosity > 0.8:
st.write("- Introduce a completely new type of sensory input or cognitive challenge")
st.write("\nLong-term goals:")
st.write("- Maintain a balanced distribution of sensory inputs to ensure well-rounded development")
st.write("- Gradually increase the complexity of interactions to promote cognitive growth")
st.write("- Monitor for any persistent negative trends and adjust the interaction strategy accordingly")
# End of the script |