Spaces:
Sleeping
Sleeping
File size: 11,229 Bytes
0611560 c5987cc 58b97f2 b91d93b a750190 9aeacca b91d93b a8b2fd4 0611560 6e1639c a8b2fd4 0611560 9aeacca d9be852 9aeacca d9be852 a8b2fd4 a750190 a8b2fd4 d9be852 a750190 a8b2fd4 d9be852 a750190 a8b2fd4 a750190 d9be852 a750190 a8b2fd4 d9be852 a750190 60e6faa a8b2fd4 60e6faa a8b2fd4 4f53727 60e6faa 9aeacca 0611560 a8b2fd4 d9be852 a8b2fd4 d9be852 4f53727 a8b2fd4 4f53727 a8b2fd4 a750190 a8b2fd4 4f53727 a8b2fd4 a750190 d9be852 6e1639c a8b2fd4 9aeacca b91d93b a8b2fd4 b91d93b a8b2fd4 b91d93b a8b2fd4 b91d93b a8b2fd4 4f53727 b91d93b a8b2fd4 4f53727 b91d93b a8b2fd4 a750190 a8b2fd4 a750190 a8b2fd4 a750190 a8b2fd4 a750190 a8b2fd4 a750190 a8b2fd4 a750190 a8b2fd4 a750190 a8b2fd4 a750190 a8b2fd4 a750190 a8b2fd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import io
import base64
from streamlit_drawable_canvas import st_canvas
# Set page config for a futuristic look
st.set_page_config(page_title="NeuraSense AI", page_icon="π§ ", layout="wide")
# Custom CSS for a futuristic look
st.markdown("""
<style>
body {
color: #E0E0E0;
background-color: #0E1117;
}
.stApp {
background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%);
}
.stButton>button {
color: #00FFFF;
border-color: #00FFFF;
border-radius: 20px;
}
.stSlider>div>div>div>div {
background-color: #00FFFF;
}
</style>
""", unsafe_allow_html=True)
# Constants
AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800
# Set up DialoGPT model
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
return tokenizer, model
tokenizer, model = load_model()
# Simulated Sensor Classes
class AdvancedSensors:
@staticmethod
def measure_pressure(base_sensitivity, pressure, duration):
return base_sensitivity * pressure * (1 - np.exp(-duration / 2))
@staticmethod
def measure_temperature(base_temp, pressure, duration):
return base_temp + 10 * pressure * (1 - np.exp(-duration / 3))
@staticmethod
def measure_texture(x, y):
textures = ["nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky", "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"]
return textures[hash((x, y)) % len(textures)]
@staticmethod
def measure_em_field(x, y, sensitivity):
return (np.sin(x/30) * np.cos(y/30) + np.random.normal(0, 0.1)) * 10 * sensitivity
@staticmethod
def measure_quantum_state(x, y):
states = ["superposition", "entangled", "decoherent", "quantum tunneling", "quantum oscillation"]
return states[hash((x, y)) % len(states)]
# Create more detailed sensation map for the avatar
def create_sensation_map(width, height):
sensation_map = np.zeros((height, width, 10)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural
for y in range(height):
for x in range(width):
# Base sensitivities
base_sensitivities = np.random.rand(10) * 0.5 + 0.5
# Enhance certain areas
if 200 < x < 400 and 100 < y < 200: # Head
base_sensitivities *= 1.5
elif 250 < x < 350 and 250 < y < 550: # Torso
base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em
elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms
base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure
elif 200 < x < 400 and 600 < y < 800: # Legs
base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch
sensation_map[y, x] = base_sensitivities
return sensation_map
avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)
# Create futuristic human-like avatar
def create_avatar():
img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0,0,0,0))
draw = ImageDraw.Draw(img)
# Body outline
draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
# Head
draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
# Eyes
draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
# Neural network lines
for _ in range(50):
start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
draw.line([start, end], fill=(0, 255, 255, 50), width=1)
return img
avatar_image = create_avatar()
# Streamlit app
st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation")
# Create two columns
col1, col2 = st.columns([2, 1])
# Avatar display with touch interface
with col1:
st.subheader("Humanoid Avatar Interface")
# Use st_canvas for touch input
canvas_result = st_canvas(
fill_color="rgba(0, 255, 255, 0.3)",
stroke_width=2,
stroke_color="#00FFFF",
background_image=avatar_image,
height=AVATAR_HEIGHT,
width=AVATAR_WIDTH,
drawing_mode="point",
key="canvas",
)
# Touch controls and output
with col2:
st.subheader("Neural Interface Controls")
# Touch duration
touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
# Touch pressure
touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
if canvas_result.json_data is not None:
objects = canvas_result.json_data["objects"]
if len(objects) > 0:
last_touch = objects[-1]
touch_x, touch_y = last_touch["left"], last_touch["top"]
sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
pain, pleasure, pressure_sens, temp_sens, texture_sens, em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens = sensation
measured_pressure = AdvancedSensors.measure_pressure(pressure_sens, touch_pressure, touch_duration)
measured_temp = AdvancedSensors.measure_temperature(37, touch_pressure, touch_duration)
measured_texture = AdvancedSensors.measure_texture(touch_x, touch_y)
measured_em = AdvancedSensors.measure_em_field(touch_x, touch_y, em_sens)
quantum_state = AdvancedSensors.measure_quantum_state(touch_x, touch_y)
# Calculate overall sensations
pain_level = pain * measured_pressure * touch_pressure
pleasure_level = pleasure * (measured_temp - 37) / 10
tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
neural_response = neural_sens * (measured_pressure + measured_temp - 37) / 10
st.write("### Sensory Data Analysis")
st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}")
# Create a futuristic data display
data_display = f"""
```
βββββββββββββββββββββββββββββββββββββββββββββββ
β Pressure : {measured_pressure:.2f} β
β Temperature : {measured_temp:.2f}Β°C β
β Texture : {measured_texture} β
β EM Field : {measured_em:.2f} ΞΌT β
β Quantum State: {quantum_state} β
βββββββββββββββββββββββββββββββββββββββββββββββ€
β Pain Level : {pain_level:.2f} β
β Pleasure : {pleasure_level:.2f} β
β Tickle : {tickle_level:.2f} β
β Itch : {itch_level:.2f} β
β Neural Response: {neural_response:.2f} β
βββββββββββββββββββββββββββββββββββββββββββββββ
"""
st.code(data_display, language="")
# Generate description
prompt = f"""Human: Analyze the sensory input for a hyper-advanced AI humanoid:
Location: ({touch_x:.1f}, {touch_y:.1f})
Duration: {touch_duration:.1f}s, Intensity: {touch_pressure:.2f}
Pressure: {measured_pressure:.2f}
Temperature: {measured_temp:.2f}Β°C
Texture: {measured_texture}
EM Field: {measured_em:.2f} ΞΌT
Quantum State: {quantum_state}
Resulting in:
Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f}
Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f}
Neural Response: {neural_response:.2f}
Provide a detailed, scientific analysis of the AI's experience.
AI:"""
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=300, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7)
response = tokenizer.decode(output[0], skip_special_tokens=True).split("AI:")[-1].strip()
st.write("### AI's Sensory Analysis:")
st.write(response)
# Visualize sensation map
st.subheader("Quantum Neuro-Sensory Map")
fig, axs = plt.subplots(2, 5, figsize=(20, 8))
titles = ['Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture', 'EM Field', 'Tickle', 'Itch', 'Quantum', 'Neural']
for i, title in enumerate(titles):
ax = axs[i // 5, i % 5]
im = ax.imshow(avatar_sensation_map[:, :, i], cmap='plasma')
ax.set_title(title)
fig.colorbar(im, ax=ax)
plt.tight_layout()
st.pyplot(fig)
st.write("The quantum neuro-sensory map illustrates the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.")
# Add information about the AI's advanced capabilities
st.subheader("NeuraSense AI: Cutting-Edge Sensory Capabilities")
st.write("""
This hyper-advanced AI humanoid incorporates revolutionary sensory technology:
1. Quantum-Enhanced Pressure Sensors: Utilize quantum tunneling effects for unparalleled sensitivity.
2. Nano-scale Thermal Detectors: Capable of detecting temperature variations to 0.001Β°C.
3. Adaptive Texture Analysis: Employs machine learning to continually refine texture perception.
4. Electromagnetic Field Sensors: Can detect and analyze complex EM patterns in the environment.
5. Quantum State Detector: Interprets quantum phenomena, adding a new dimension to sensory input.
6. Neural Network Integration: Simulates complex interplay of sensations, creating emergent experiences.
7. Tickle and Itch Simulation: Replicates these unique sensations with quantum-level precision.
The AI's responses are generated using an advanced language model, providing detailed scientific analysis of its sensory experiences. This simulation showcases the potential for creating incredibly sophisticated and responsive artificial sensory systems that go beyond human capabilities.
""")
# Footer
st.write("---")
st.write("NeuraSense AI: Quantum-Enhanced Sensory Simulation v3.0")
st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.") |