File size: 11,229 Bytes
0611560
c5987cc
58b97f2
b91d93b
a750190
9aeacca
b91d93b
a8b2fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0611560
6e1639c
a8b2fd4
0611560
9aeacca
 
 
d9be852
 
9aeacca
 
 
 
d9be852
a8b2fd4
a750190
a8b2fd4
 
d9be852
a750190
a8b2fd4
 
d9be852
a750190
 
a8b2fd4
a750190
d9be852
a750190
a8b2fd4
 
 
 
 
 
 
d9be852
a750190
60e6faa
a8b2fd4
60e6faa
 
a8b2fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
4f53727
60e6faa
 
9aeacca
0611560
a8b2fd4
d9be852
a8b2fd4
d9be852
4f53727
a8b2fd4
 
4f53727
a8b2fd4
 
a750190
a8b2fd4
 
 
4f53727
a8b2fd4
 
 
 
 
a750190
d9be852
 
 
 
6e1639c
a8b2fd4
9aeacca
b91d93b
 
 
a8b2fd4
b91d93b
a8b2fd4
b91d93b
a8b2fd4
 
 
 
 
 
 
 
 
 
 
b91d93b
 
 
a8b2fd4
4f53727
b91d93b
a8b2fd4
4f53727
b91d93b
a8b2fd4
a750190
a8b2fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a750190
 
a8b2fd4
 
 
a750190
 
a8b2fd4
 
a750190
 
 
 
 
 
a8b2fd4
a750190
a8b2fd4
 
a750190
a8b2fd4
a750190
a8b2fd4
 
 
 
 
 
 
a750190
a8b2fd4
a750190
 
 
 
a8b2fd4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import io
import base64
from streamlit_drawable_canvas import st_canvas

# Set page config for a futuristic look
st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide")

# Custom CSS for a futuristic look
st.markdown("""
<style>
    body {
        color: #E0E0E0;
        background-color: #0E1117;
    }
    .stApp {
        background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%);
    }
    .stButton>button {
        color: #00FFFF;
        border-color: #00FFFF;
        border-radius: 20px;
    }
    .stSlider>div>div>div>div {
        background-color: #00FFFF;
    }
</style>
""", unsafe_allow_html=True)

# Constants
AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800

# Set up DialoGPT model
@st.cache_resource
def load_model():
    tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
    model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
    return tokenizer, model

tokenizer, model = load_model()

# Simulated Sensor Classes
class AdvancedSensors:
    @staticmethod
    def measure_pressure(base_sensitivity, pressure, duration):
        return base_sensitivity * pressure * (1 - np.exp(-duration / 2))

    @staticmethod
    def measure_temperature(base_temp, pressure, duration):
        return base_temp + 10 * pressure * (1 - np.exp(-duration / 3))

    @staticmethod
    def measure_texture(x, y):
        textures = ["nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky", "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"]
        return textures[hash((x, y)) % len(textures)]

    @staticmethod
    def measure_em_field(x, y, sensitivity):
        return (np.sin(x/30) * np.cos(y/30) + np.random.normal(0, 0.1)) * 10 * sensitivity

    @staticmethod
    def measure_quantum_state(x, y):
        states = ["superposition", "entangled", "decoherent", "quantum tunneling", "quantum oscillation"]
        return states[hash((x, y)) % len(states)]

# Create more detailed sensation map for the avatar
def create_sensation_map(width, height):
    sensation_map = np.zeros((height, width, 10))  # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural
    for y in range(height):
        for x in range(width):
            # Base sensitivities
            base_sensitivities = np.random.rand(10) * 0.5 + 0.5
            
            # Enhance certain areas
            if 200 < x < 400 and 100 < y < 200:  # Head
                base_sensitivities *= 1.5
            elif 250 < x < 350 and 250 < y < 550:  # Torso
                base_sensitivities[2:6] *= 1.3  # Enhance pressure, temp, texture, em
            elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600:  # Arms
                base_sensitivities[0:2] *= 1.2  # Enhance pain and pleasure
            elif 200 < x < 400 and 600 < y < 800:  # Legs
                base_sensitivities[6:8] *= 1.4  # Enhance tickle and itch
            
            sensation_map[y, x] = base_sensitivities
    
    return sensation_map

avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)

# Create futuristic human-like avatar
def create_avatar():
    img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0,0,0,0))
    draw = ImageDraw.Draw(img)
    
    # Body outline
    draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
    
    # Head
    draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
    
    # Eyes
    draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
    draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
    
    # Neural network lines
    for _ in range(50):
        start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
        end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
        draw.line([start, end], fill=(0, 255, 255, 50), width=1)
    
    return img

avatar_image = create_avatar()

# Streamlit app
st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation")

# Create two columns
col1, col2 = st.columns([2, 1])

# Avatar display with touch interface
with col1:
    st.subheader("Humanoid Avatar Interface")
    
    # Use st_canvas for touch input
    canvas_result = st_canvas(
        fill_color="rgba(0, 255, 255, 0.3)",
        stroke_width=2,
        stroke_color="#00FFFF",
        background_image=avatar_image,
        height=AVATAR_HEIGHT,
        width=AVATAR_WIDTH,
        drawing_mode="point",
        key="canvas",
    )

# Touch controls and output
with col2:
    st.subheader("Neural Interface Controls")
    
    # Touch duration
    touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
    
    # Touch pressure
    touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
    
    if canvas_result.json_data is not None:
        objects = canvas_result.json_data["objects"]
        if len(objects) > 0:
            last_touch = objects[-1]
            touch_x, touch_y = last_touch["left"], last_touch["top"]
            
            sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
            pain, pleasure, pressure_sens, temp_sens, texture_sens, em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens = sensation

            measured_pressure = AdvancedSensors.measure_pressure(pressure_sens, touch_pressure, touch_duration)
            measured_temp = AdvancedSensors.measure_temperature(37, touch_pressure, touch_duration)
            measured_texture = AdvancedSensors.measure_texture(touch_x, touch_y)
            measured_em = AdvancedSensors.measure_em_field(touch_x, touch_y, em_sens)
            quantum_state = AdvancedSensors.measure_quantum_state(touch_x, touch_y)

            # Calculate overall sensations
            pain_level = pain * measured_pressure * touch_pressure
            pleasure_level = pleasure * (measured_temp - 37) / 10
            tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
            itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
            neural_response = neural_sens * (measured_pressure + measured_temp - 37) / 10

            st.write("### Sensory Data Analysis")
            st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
            st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}")
            
            # Create a futuristic data display
            data_display = f"""
            ```
            β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
            β”‚ Pressure     : {measured_pressure:.2f}      β”‚
            β”‚ Temperature  : {measured_temp:.2f}Β°C        β”‚
            β”‚ Texture      : {measured_texture}           β”‚
            β”‚ EM Field     : {measured_em:.2f} ΞΌT         β”‚
            β”‚ Quantum State: {quantum_state}              β”‚
            β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
            β”‚ Pain Level   : {pain_level:.2f}             β”‚
            β”‚ Pleasure     : {pleasure_level:.2f}         β”‚
            β”‚ Tickle       : {tickle_level:.2f}           β”‚
            β”‚ Itch         : {itch_level:.2f}             β”‚
            β”‚ Neural Response: {neural_response:.2f}      β”‚
            β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
            """
            st.code(data_display, language="")

            # Generate description
            prompt = f"""Human: Analyze the sensory input for a hyper-advanced AI humanoid:
            Location: ({touch_x:.1f}, {touch_y:.1f})
            Duration: {touch_duration:.1f}s, Intensity: {touch_pressure:.2f}
            Pressure: {measured_pressure:.2f}
            Temperature: {measured_temp:.2f}Β°C
            Texture: {measured_texture}
            EM Field: {measured_em:.2f} ΞΌT
            Quantum State: {quantum_state}
            Resulting in:
            Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f}
            Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f}
            Neural Response: {neural_response:.2f}
            Provide a detailed, scientific analysis of the AI's experience.
            AI:"""
            
            input_ids = tokenizer.encode(prompt, return_tensors="pt")
            output = model.generate(input_ids, max_length=300, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7)
            
            response = tokenizer.decode(output[0], skip_special_tokens=True).split("AI:")[-1].strip()
            
            st.write("### AI's Sensory Analysis:")
            st.write(response)

# Visualize sensation map
st.subheader("Quantum Neuro-Sensory Map")
fig, axs = plt.subplots(2, 5, figsize=(20, 8))
titles = ['Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture', 'EM Field', 'Tickle', 'Itch', 'Quantum', 'Neural']

for i, title in enumerate(titles):
    ax = axs[i // 5, i % 5]
    im = ax.imshow(avatar_sensation_map[:, :, i], cmap='plasma')
    ax.set_title(title)
    fig.colorbar(im, ax=ax)

plt.tight_layout()
st.pyplot(fig)

st.write("The quantum neuro-sensory map illustrates the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.")

# Add information about the AI's advanced capabilities
st.subheader("NeuraSense AI: Cutting-Edge Sensory Capabilities")
st.write("""
This hyper-advanced AI humanoid incorporates revolutionary sensory technology:

1. Quantum-Enhanced Pressure Sensors: Utilize quantum tunneling effects for unparalleled sensitivity.
2. Nano-scale Thermal Detectors: Capable of detecting temperature variations to 0.001Β°C.
3. Adaptive Texture Analysis: Employs machine learning to continually refine texture perception.
4. Electromagnetic Field Sensors: Can detect and analyze complex EM patterns in the environment.
5. Quantum State Detector: Interprets quantum phenomena, adding a new dimension to sensory input.
6. Neural Network Integration: Simulates complex interplay of sensations, creating emergent experiences.
7. Tickle and Itch Simulation: Replicates these unique sensations with quantum-level precision.

The AI's responses are generated using an advanced language model, providing detailed scientific analysis of its sensory experiences. This simulation showcases the potential for creating incredibly sophisticated and responsive artificial sensory systems that go beyond human capabilities.
""")

# Footer
st.write("---")
st.write("NeuraSense AI: Quantum-Enhanced Sensory Simulation v3.0")
st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.")