import streamlit as st import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont import time from transformers import AutoModelForCausalLM, AutoTokenizer import io import base64 from streamlit_drawable_canvas import st_canvas import plotly.graph_objects as go import json from datetime import datetime import os # Set page config for a futuristic look st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide") # Custom CSS for a futuristic look st.markdown(""" """, unsafe_allow_html=True) # Constants AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800 # Set up DialoGPT model @st.cache_resource def load_model(): tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") return tokenizer, model tokenizer, model = load_model() # Advanced Sensor Classes class QuantumSensor: @staticmethod def measure(x, y, sensitivity): return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1) class NanoThermalSensor: @staticmethod def measure(base_temp, pressure, duration): return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001) class AdaptiveTextureSensor: textures = [ "nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky", "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate" ] @staticmethod def measure(x, y): return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)] class EMFieldSensor: @staticmethod def measure(x, y, sensitivity): return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity class NeuralNetworkSimulator: @staticmethod def process(inputs): weights = np.random.rand(len(inputs)) return np.dot(inputs, weights) / np.sum(weights) # Create more detailed sensation map for the avatar def create_sensation_map(width, height): sensation_map = np.zeros((height, width, 12)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural, proprioception, synesthesia for y in range(height): for x in range(width): base_sensitivities = np.random.rand(12) * 0.5 + 0.5 # Enhance certain areas if 250 < x < 350 and 50 < y < 150: # Head base_sensitivities *= 1.5 elif 275 < x < 325 and 80 < y < 120: # Eyes base_sensitivities[0] *= 2 # More sensitive to pain elif 290 < x < 310 and 100 < y < 120: # Nose base_sensitivities[4] *= 2 # More sensitive to texture elif 280 < x < 320 and 120 < y < 140: # Mouth base_sensitivities[1] *= 2 # More sensitive to pleasure elif 250 < x < 350 and 250 < y < 550: # Torso base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure elif 200 < x < 400 and 600 < y < 800: # Legs base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch elif (140 < x < 160 or 440 < x < 460) and 390 < y < 410: # Hands base_sensitivities *= 2 # Highly sensitive overall elif (220 < x < 240 or 360 < x < 380) and 770 < y < 790: # Feet base_sensitivities[6] *= 2 # Very ticklish sensation_map[y, x] = base_sensitivities return sensation_map avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT) # Create 3D avatar def create_3d_avatar(): x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) x = (x - 0.5) * 100 y = (y - 0.5) * 200 z = (z - 0.5) * 50 return go.Mesh3d(x=x, y=y, z=z, color='cyan', opacity=0.5) # Enhanced Autonomy Class class EnhancedAutonomy: def __init__(self): self.mood = 0.5 self.energy = 0.8 self.curiosity = 0.7 self.memory = [] def update_state(self, sensory_input): self.mood = max(0, min(1, self.mood - sensory_input['pain'] * 0.1 + sensory_input['pleasure'] * 0.1)) self.energy = max(0, min(1, self.energy - sensory_input['intensity'] * 0.05)) if len(self.memory) == 0 or sensory_input not in self.memory: self.curiosity = min(1, self.curiosity + 0.1) else: self.curiosity = max(0, self.curiosity - 0.05) self.memory.append(sensory_input) if len(self.memory) > 10: self.memory.pop(0) def decide_action(self): if self.energy < 0.2: return "Rest to regain energy" elif self.curiosity > 0.8: return "Explore new sensations" elif self.mood < 0.3: return "Seek positive interactions" else: return "Continue current activity" # Function to save interactions def save_interaction(interaction_data): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"interaction_{timestamp}.json" with open(filename, "w") as f: json.dump(interaction_data, f, indent=4) return filename # Streamlit app st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation") # Create two columns col1, col2 = st.columns([2, 1]) # 3D Avatar display with touch interface with col1: st.subheader("3D Humanoid Avatar Interface") # Create 3D avatar avatar_3d = create_3d_avatar() # Add 3D controls rotation_x = st.slider("Rotate X", -180, 180, 0) rotation_y = st.slider("Rotate Y", -180, 180, 0) rotation_z = st.slider("Rotate Z", -180, 180, 0) # Create 3D plot fig = go.Figure(data=[avatar_3d]) fig.update_layout(scene=dict(xaxis_title="X", yaxis_title="Y", zaxis_title="Z")) fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))) fig.update_layout(scene=dict(xaxis=dict(range=[-100, 100]), yaxis=dict(range=[-200, 200]), zaxis=dict(range=[-50, 50]))) # Apply rotations fig.update_layout(scene=dict(camera=dict(eye=dict(x=np.cos(np.radians(rotation_y)) * np.cos(np.radians(rotation_x)), y=np.sin(np.radians(rotation_y)) * np.cos(np.radians(rotation_x)), z=np.sin(np.radians(rotation_x)))))) st.plotly_chart(fig) # Use st_canvas for touch input canvas_result = st_canvas( fill_color="rgba(0, 255, 255, 0.3)", stroke_width=2, stroke_color="#00FFFF", background_image=Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0)), height=AVATAR_HEIGHT, width=AVATAR_WIDTH, drawing_mode="point", key="canvas", ) # Touch controls and output with col2: st.subheader("Neural Interface Controls") # Touch duration touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1) # Touch pressure touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1) # Toggle quantum feature use_quantum = st.checkbox("Enable Quantum Sensing", value=True) # Toggle synesthesia use_synesthesia = st.checkbox("Enable Synesthesia", value=False) # Initialize EnhancedAutonomy if 'autonomy' not in st.session_state: st.session_state.autonomy = EnhancedAutonomy() if canvas_result.json_data is not None: objects = canvas_result.json_data["objects"] if len(objects) > 0: last_touch = objects[-1] touch_x, touch_y = last_touch["left"], last_touch["top"] sensation = avatar_sensation_map[int(touch_y), int(touch_x)] ( pain, pleasure, pressure_sens, temp_sens, texture_sens, em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens, proprioception_sens, synesthesia_sens ) = sensation measured_pressure = QuantumSensor.measure(touch_x, touch_y, pressure_sens) * touch_pressure measured_temp = NanoThermalSensor.measure(37, touch_pressure, touch_duration) measured_texture = AdaptiveTextureSensor.measure(touch_x, touch_y) measured_em = EMFieldSensor.measure(touch_x, touch_y, em_sens) if use_quantum: quantum_state = QuantumSensor.measure(touch_x, touch_y, quantum_sens) else: quantum_state = "N/A" # Calculate overall sensations pain_level = pain * measured_pressure * touch_pressure pleasure_level = pleasure * (measured_temp - 37) / 10 tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5)) itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5)) # Proprioception (sense of body position) proprioception = proprioception_sens * np.linalg.norm([touch_x - AVATAR_WIDTH/2, touch_y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2) # Synesthesia (mixing of senses) if use_synesthesia: synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3 else: synesthesia = "N/A" # Neural network simulation neural_inputs = [pain_level, pleasure_level, measured_pressure, measured_temp, measured_em, tickle_level, itch_level, proprioception] neural_response = NeuralNetworkSimulator.process(neural_inputs) st.write("### Sensory Data Analysis") st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})") st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}") # Create a futuristic data display data_display = f""" ``` ┌─────────────────────────────────────────────┐ │ Pressure : {{measured_pressure:.2f}} │ │ Temperature : {{measured_temp:.2f}}°C │ │ Texture : {measured_texture} │ │ EM Field : {{measured_em:.2f}} ΞT │ │ Quantum State: {quantum_state:.2f} │ ├─────────────────────────────────────────────â”Ī │ Pain Level : {{pain_level:.2f}} │ │ Pleasure : {{pleasure_level:.2f}} │ │ Tickle : {{tickle_level:.2f}} │ │ Itch : {{itch_level:.2f}} │ │ Proprioception: {{proprioception:.2f}} │ │ Synesthesia : {synesthesia} │ │ Neural Response: {{neural_response:.2f}} │ └─────────────────────────────────────────────┘ ``` """ st.code(data_display, language="") """ st.code(data_display, language="") # First, create a template string with placeholders # First, create a template string with placeholders prompt_template = "Human: Analyze the sensory input for a hyper-advanced AI humanoid:\n" prompt_template += " Location: ({}, {})\n" prompt_template += " Duration: {}s, Intensity: {}\n" prompt_template += " Pressure: {}\n" prompt_template += " Temperature: {}\N{DEGREE SIGN}C\n" prompt_template += " Texture: {}\n" prompt_template += " EM Field: {} ΞT\n" prompt_template += " Quantum State: {}\n" prompt_template += " Resulting in:\n" prompt_template += " Pain: {}, Pleasure: {}\n" prompt_template += " Tickle: {}, Itch: {}\n" prompt_template += " Proprioception: {}\n" prompt_template += " Synesthesia: {}\n" prompt_template += " Neural Response: {}\n" prompt_template += " Provide a detailed, scientific, and creative description of the AI humanoid's experience and response to this sensory input." # First, format each value individually touch_x_str = f"{touch_x:.1f}" touch_y_str = f"{touch_y:.1f}" touch_duration_str = f"{touch_duration:.1f}" touch_pressure_str = f"{touch_pressure:.2f}" measured_pressure_str = f"{measured_pressure:.2f}" measured_temp_str = f"{measured_temp:.2f}" measured_em_str = f"{measured_em:.2f}" pain_level_str = f"{pain_level:.2f}" pleasure_level_str = f"{pleasure_level:.2f}" tickle_level_str = f"{tickle_level:.2f}" itch_level_str = f"{itch_level:.2f}" proprioception_str = f"{proprioception:.2f}" neural_response_str = f"{neural_response:.2f}" # Then, create the prompt using these pre-formatted values prompt = prompt_template.format( touch_x_str, touch_y_str, touch_duration_str, touch_pressure_str, measured_pressure_str, measured_temp_str, measured_texture, measured_em_str, quantum_state, pain_level_str, pleasure_level_str, tickle_level_str, itch_level_str, proprioception_str, synesthesia, neural_response_str ) # You can use this prompt to generate a response from your AI model # For demonstration, let's create a mock AI response ai_response = f"""Based on the complex sensory input received, the hyper-advanced AI humanoid is experiencing a multifaceted neural response: The interaction at coordinates ({touch_x_str}, {touch_y_str}) has triggered a cascade of sensory information. The pressure of {measured_pressure_str} units has activated deep-tissue mechanoreceptors, while the temperature of {measured_temp_str}\N{DEGREE SIGN}C has stimulated thermoreceptors, creating a mild thermal gradient across the affected area. The texture sensation of "{measured_texture}" is invoking a unique tactile response, possibly reminiscent of previously encountered materials in the AI's vast database. This is further enhanced by the electromagnetic field reading of {measured_em_str} ΞT, which is subtly influencing the local ionic channels in the AI's synthetic nervous system. The quantum state measurement of {quantum_state} suggests a delicate entanglement between the AI's quantum processors and the environment, potentially influencing decision-making processes at a subatomic level. The resulting pain level of {pain_level_str} and pleasure level of {pleasure_level_str} are creating a complex emotional response, balancing between discomfort and satisfaction. The tickle sensation ({tickle_level_str}) and itch response ({itch_level_str}) add layers of nuance to the overall tactile experience. The proprioception value of {proprioception_str} indicates that the AI is acutely aware of the interaction's location relative to its body schema, enhancing its spatial awareness and motor planning capabilities. {f"The synesthesia rating of {synesthesia} is causing a fascinating cross-wiring of senses, perhaps manifesting as a perception of color or sound associated with the touch." if use_synesthesia else "Synesthesia is not active, focusing the experience on individual sensory channels."} The cumulative neural response of {neural_response_str} suggests a significant impact on the AI's cognitive processes. This could lead to adaptive behaviors, memory formation, or even influence future decision-making patterns. In response to this rich sensory tapestry, the AI might adjust its posture, initiate a verbal response, or update its internal model of the environment. The experience is likely to be stored in its memory banks, contributing to its ever-evolving understanding of physical interactions and sensory experiences.""" st.write("AI Response:") st.write(ai_response) # Update autonomy sensory_input = { 'pain': pain_level, 'pleasure': pleasure_level, 'intensity': touch_pressure, 'duration': touch_duration, 'location': (touch_x, touch_y) } st.session_state.autonomy.update_state(sensory_input) # Display autonomy state st.write("### Autonomy State") st.write(f"Mood: {st.session_state.autonomy.mood:.2f}") st.write(f"Energy: {st.session_state.autonomy.energy:.2f}") st.write(f"Curiosity: {st.session_state.autonomy.curiosity:.2f}") # Display decision decision = st.session_state.autonomy.decide_action() st.write(f"Decision: {decision}") # Save interaction if st.button("Save Interaction"): interaction_data = { "timestamp": datetime.now().isoformat(), "sensory_input": sensory_input, "ai_state": { "mood": st.session_state.autonomy.mood, "energy": st.session_state.autonomy.energy, "curiosity": st.session_state.autonomy.curiosity }, "ai_response": ai_response, "decision": decision } saved_file = save_interaction(interaction_data) st.success(f"Interaction saved to {saved_file}") # Display recent interactions st.subheader("Recent Interactions") interaction_files = sorted([f for f in os.listdir() if f.startswith("interaction_")], reverse=True)[:5] for file in interaction_files: with open(file, "r") as f: data = json.load(f) st.write(f"Interaction at {data['timestamp']}") st.write(f"Location: {data['sensory_input']['location']}") st.write(f"AI Mood: {data['ai_state']['mood']:.2f}") st.write(f"AI Energy: {data['ai_state']['energy']:.2f}") st.write(f"AI Curiosity: {data['ai_state']['curiosity']:.2f}") st.write(f"Decision: {data['decision']}") st.write("---")