Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import numpy as np
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
from plotly.subplots import make_subplots
|
| 5 |
+
import streamlit as st
|
| 6 |
+
|
| 7 |
+
class Organelle:
|
| 8 |
+
def __init__(self, type):
|
| 9 |
+
self.type = type # e.g., "nucleus", "mitochondria", "chloroplast"
|
| 10 |
+
|
| 11 |
+
class Cell:
|
| 12 |
+
def __init__(self, x, y, cell_type="prokaryote"):
|
| 13 |
+
self.x = x
|
| 14 |
+
self.y = y
|
| 15 |
+
self.energy = 100
|
| 16 |
+
self.cell_type = cell_type
|
| 17 |
+
self.organelles = []
|
| 18 |
+
self.size = 1
|
| 19 |
+
self.color = "blue"
|
| 20 |
+
self.division_threshold = 150
|
| 21 |
+
|
| 22 |
+
if cell_type == "prokaryote":
|
| 23 |
+
self.color = "lightblue"
|
| 24 |
+
elif cell_type == "early_eukaryote":
|
| 25 |
+
self.organelles.append(Organelle("nucleus"))
|
| 26 |
+
self.color = "green"
|
| 27 |
+
self.size = 2
|
| 28 |
+
elif cell_type == "advanced_eukaryote":
|
| 29 |
+
self.organelles.extend([Organelle("nucleus"), Organelle("mitochondria")])
|
| 30 |
+
self.color = "red"
|
| 31 |
+
self.size = 3
|
| 32 |
+
elif cell_type == "plant_like":
|
| 33 |
+
self.organelles.extend([Organelle("nucleus"), Organelle("mitochondria"), Organelle("chloroplast")])
|
| 34 |
+
self.color = "darkgreen"
|
| 35 |
+
self.size = 4
|
| 36 |
+
|
| 37 |
+
def move(self, environment):
|
| 38 |
+
dx = random.uniform(-1, 1)
|
| 39 |
+
dy = random.uniform(-1, 1)
|
| 40 |
+
self.x = max(0, min(environment.width - 1, self.x + dx))
|
| 41 |
+
self.y = max(0, min(environment.height - 1, self.y + dy))
|
| 42 |
+
self.energy -= 0.5 * self.size
|
| 43 |
+
|
| 44 |
+
def feed(self, environment):
|
| 45 |
+
if "chloroplast" in [org.type for org in self.organelles]:
|
| 46 |
+
# Photosynthesis
|
| 47 |
+
self.energy += environment.light_level * 2
|
| 48 |
+
else:
|
| 49 |
+
# Consume environmental nutrients
|
| 50 |
+
self.energy += environment.grid[int(self.y)][int(self.x)] * 0.1
|
| 51 |
+
environment.grid[int(self.y)][int(self.x)] *= 0.9
|
| 52 |
+
|
| 53 |
+
def can_divide(self):
|
| 54 |
+
return self.energy > self.division_threshold
|
| 55 |
+
|
| 56 |
+
def divide(self):
|
| 57 |
+
if self.can_divide():
|
| 58 |
+
self.energy /= 2
|
| 59 |
+
return Cell(self.x, self.y, self.cell_type)
|
| 60 |
+
return None
|
| 61 |
+
|
| 62 |
+
def can_fuse(self, other):
|
| 63 |
+
return (self.cell_type == "prokaryote" and other.cell_type == "prokaryote" and
|
| 64 |
+
random.random() < 0.001) # 0.1% chance of fusion
|
| 65 |
+
|
| 66 |
+
def fuse(self, other):
|
| 67 |
+
new_cell = Cell(
|
| 68 |
+
(self.x + other.x) / 2,
|
| 69 |
+
(self.y + other.y) / 2,
|
| 70 |
+
"early_eukaryote"
|
| 71 |
+
)
|
| 72 |
+
new_cell.energy = self.energy + other.energy
|
| 73 |
+
return new_cell
|
| 74 |
+
|
| 75 |
+
class Environment:
|
| 76 |
+
def __init__(self, width, height):
|
| 77 |
+
self.width = width
|
| 78 |
+
self.height = height
|
| 79 |
+
self.grid = np.random.rand(height, width) * 10 # Nutrient distribution
|
| 80 |
+
self.light_level = 5 # Ambient light level
|
| 81 |
+
self.cells = []
|
| 82 |
+
self.time = 0
|
| 83 |
+
|
| 84 |
+
def add_cell(self, cell):
|
| 85 |
+
self.cells.append(cell)
|
| 86 |
+
|
| 87 |
+
def update(self):
|
| 88 |
+
self.time += 1
|
| 89 |
+
|
| 90 |
+
# Update environment
|
| 91 |
+
self.grid += np.random.rand(self.height, self.width) * 0.1
|
| 92 |
+
self.light_level = 5 + np.sin(self.time / 100) * 2 # Fluctuating light levels
|
| 93 |
+
|
| 94 |
+
new_cells = []
|
| 95 |
+
cells_to_remove = []
|
| 96 |
+
|
| 97 |
+
for cell in self.cells:
|
| 98 |
+
cell.move(self)
|
| 99 |
+
cell.feed(self)
|
| 100 |
+
|
| 101 |
+
if cell.energy <= 0:
|
| 102 |
+
cells_to_remove.append(cell)
|
| 103 |
+
elif cell.can_divide():
|
| 104 |
+
new_cell = cell.divide()
|
| 105 |
+
if new_cell:
|
| 106 |
+
new_cells.append(new_cell)
|
| 107 |
+
|
| 108 |
+
# Handle cell fusion
|
| 109 |
+
for i, cell1 in enumerate(self.cells):
|
| 110 |
+
for cell2 in self.cells[i+1:]:
|
| 111 |
+
if cell1.can_fuse(cell2):
|
| 112 |
+
new_cell = cell1.fuse(cell2)
|
| 113 |
+
new_cells.append(new_cell)
|
| 114 |
+
cells_to_remove.extend([cell1, cell2])
|
| 115 |
+
|
| 116 |
+
# Add new cells and remove dead/fused cells
|
| 117 |
+
self.cells.extend(new_cells)
|
| 118 |
+
self.cells = [cell for cell in self.cells if cell not in cells_to_remove]
|
| 119 |
+
|
| 120 |
+
# Introduce mutations
|
| 121 |
+
for cell in self.cells:
|
| 122 |
+
if random.random() < 0.0001: # 0.01% chance of mutation
|
| 123 |
+
if cell.cell_type == "early_eukaryote":
|
| 124 |
+
cell.cell_type = "advanced_eukaryote"
|
| 125 |
+
cell.organelles.append(Organelle("mitochondria"))
|
| 126 |
+
cell.color = "red"
|
| 127 |
+
cell.size = 3
|
| 128 |
+
elif cell.cell_type == "advanced_eukaryote" and random.random() < 0.5:
|
| 129 |
+
cell.cell_type = "plant_like"
|
| 130 |
+
cell.organelles.append(Organelle("chloroplast"))
|
| 131 |
+
cell.color = "darkgreen"
|
| 132 |
+
cell.size = 4
|
| 133 |
+
|
| 134 |
+
def visualize(self):
|
| 135 |
+
fig = make_subplots(rows=1, cols=2, subplot_titles=("Cell Distribution", "Population Over Time"))
|
| 136 |
+
|
| 137 |
+
# Cell distribution
|
| 138 |
+
cell_types = set(cell.cell_type for cell in self.cells)
|
| 139 |
+
for cell_type in cell_types:
|
| 140 |
+
x = [cell.x for cell in self.cells if cell.cell_type == cell_type]
|
| 141 |
+
y = [cell.y for cell in self.cells if cell.cell_type == cell_type]
|
| 142 |
+
color = next(cell.color for cell in self.cells if cell.cell_type == cell_type)
|
| 143 |
+
size = next(cell.size * 3 for cell in self.cells if cell.cell_type == cell_type)
|
| 144 |
+
fig.add_trace(go.Scatter(x=x, y=y, mode='markers', marker=dict(color=color, size=size),
|
| 145 |
+
name=cell_type), row=1, col=1)
|
| 146 |
+
|
| 147 |
+
fig.update_xaxes(title_text="X", row=1, col=1)
|
| 148 |
+
fig.update_yaxes(title_text="Y", row=1, col=1)
|
| 149 |
+
|
| 150 |
+
# Population over time
|
| 151 |
+
population_counts = {
|
| 152 |
+
"prokaryote": [],
|
| 153 |
+
"early_eukaryote": [],
|
| 154 |
+
"advanced_eukaryote": [],
|
| 155 |
+
"plant_like": []
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
for cell_type in population_counts:
|
| 159 |
+
count = len([cell for cell in self.cells if cell.cell_type == cell_type])
|
| 160 |
+
population_counts[cell_type].append(count)
|
| 161 |
+
|
| 162 |
+
for cell_type, counts in population_counts.items():
|
| 163 |
+
fig.add_trace(go.Scatter(y=counts, mode='lines', name=cell_type), row=1, col=2)
|
| 164 |
+
|
| 165 |
+
fig.update_xaxes(title_text="Time", row=1, col=2)
|
| 166 |
+
fig.update_yaxes(title_text="Population", row=1, col=2)
|
| 167 |
+
|
| 168 |
+
fig.update_layout(height=600, width=1200,
|
| 169 |
+
title_text=f"Cell Evolution Simulation (Time: {self.time})")
|
| 170 |
+
return fig
|
| 171 |
+
|
| 172 |
+
def run_simulation(num_steps, initial_cells):
|
| 173 |
+
env = Environment(100, 100)
|
| 174 |
+
|
| 175 |
+
# Add initial cells
|
| 176 |
+
for _ in range(initial_cells):
|
| 177 |
+
cell = Cell(random.uniform(0, env.width), random.uniform(0, env.height))
|
| 178 |
+
env.add_cell(cell)
|
| 179 |
+
|
| 180 |
+
# Run simulation
|
| 181 |
+
for step in range(num_steps):
|
| 182 |
+
env.update()
|
| 183 |
+
if step % 10 == 0: # Visualize every 10 steps
|
| 184 |
+
yield env.visualize()
|
| 185 |
+
|
| 186 |
+
# Streamlit app
|
| 187 |
+
st.title("Cell Evolution Simulation")
|
| 188 |
+
|
| 189 |
+
num_steps = st.slider("Number of simulation steps", 100, 1000, 500)
|
| 190 |
+
initial_cells = st.slider("Initial number of cells", 10, 100, 50)
|
| 191 |
+
|
| 192 |
+
if st.button("Run Simulation"):
|
| 193 |
+
simulation = run_simulation(num_steps, initial_cells)
|
| 194 |
+
|
| 195 |
+
# Create a placeholder for the chart
|
| 196 |
+
chart_placeholder = st.empty()
|
| 197 |
+
|
| 198 |
+
# Update the chart for each step
|
| 199 |
+
for chart in simulation:
|
| 200 |
+
chart_placeholder.plotly_chart(chart, use_container_width=True)
|
| 201 |
+
|
| 202 |
+
st.write("Simulation complete!")
|