Commit
·
e2cf2b0
1
Parent(s):
3d781fd
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
import imageio
|
| 3 |
+
import numpy as np
|
| 4 |
+
import scipy.interpolate
|
| 5 |
+
import torch
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
|
| 10 |
+
def layout_grid(img, grid_w=None, grid_h=1, float_to_uint8=True, chw_to_hwc=True, to_numpy=True):
|
| 11 |
+
batch_size, channels, img_h, img_w = img.shape
|
| 12 |
+
if grid_w is None:
|
| 13 |
+
grid_w = batch_size // grid_h
|
| 14 |
+
assert batch_size == grid_w * grid_h
|
| 15 |
+
if float_to_uint8:
|
| 16 |
+
img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
| 17 |
+
img = img.reshape(grid_h, grid_w, channels, img_h, img_w)
|
| 18 |
+
img = img.permute(2, 0, 3, 1, 4)
|
| 19 |
+
img = img.reshape(channels, grid_h * img_h, grid_w * img_w)
|
| 20 |
+
if chw_to_hwc:
|
| 21 |
+
img = img.permute(1, 2, 0)
|
| 22 |
+
if to_numpy:
|
| 23 |
+
img = img.cpu().numpy()
|
| 24 |
+
return img
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
network_pkl=hf_hub_download('SerdarHelli/BrainMRIGAN/braingan-400.pkl')
|
| 30 |
+
with open(network_pkl, 'rb') as f:
|
| 31 |
+
G = pickle.load(f)['G_ema']
|
| 32 |
+
|
| 33 |
+
def predict(Seed,choices):
|
| 34 |
+
device = torch.device('cuda')
|
| 35 |
+
G.eval()
|
| 36 |
+
G.to(device)
|
| 37 |
+
shuffle_seed=None
|
| 38 |
+
w_frames=60*4
|
| 39 |
+
kind='cubic'
|
| 40 |
+
num_keyframes=None
|
| 41 |
+
wraps=2
|
| 42 |
+
psi=1
|
| 43 |
+
device=torch.device('cuda')
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
if choices=='4x2':
|
| 47 |
+
grid_w = 4
|
| 48 |
+
grid_h = 2
|
| 49 |
+
s1=Seed
|
| 50 |
+
seeds=(np.arange(s1-16,s1)).tolist()
|
| 51 |
+
if choices=='2x1':
|
| 52 |
+
grid_w = 2
|
| 53 |
+
grid_h = 1
|
| 54 |
+
s1=Seed
|
| 55 |
+
seeds=(np.arange(s1-4,s1)).tolist()
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
mp4='ex.mp4'
|
| 59 |
+
truncation_psi=1
|
| 60 |
+
num_keyframes=None
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
if num_keyframes is None:
|
| 64 |
+
if len(seeds) % (grid_w*grid_h) != 0:
|
| 65 |
+
raise ValueError('Number of input seeds must be divisible by grid W*H')
|
| 66 |
+
num_keyframes = len(seeds) // (grid_w*grid_h)
|
| 67 |
+
|
| 68 |
+
all_seeds = np.zeros(num_keyframes*grid_h*grid_w, dtype=np.int64)
|
| 69 |
+
for idx in range(num_keyframes*grid_h*grid_w):
|
| 70 |
+
all_seeds[idx] = seeds[idx % len(seeds)]
|
| 71 |
+
|
| 72 |
+
if shuffle_seed is not None:
|
| 73 |
+
rng = np.random.RandomState(seed=shuffle_seed)
|
| 74 |
+
rng.shuffle(all_seeds)
|
| 75 |
+
|
| 76 |
+
zs = torch.from_numpy(np.stack([np.random.RandomState(seed).randn(G.z_dim) for seed in all_seeds])).to(device)
|
| 77 |
+
ws = G.mapping(z=zs, c=None, truncation_psi=psi)
|
| 78 |
+
_ = G.synthesis(ws[:1]) # warm up
|
| 79 |
+
ws = ws.reshape(grid_h, grid_w, num_keyframes, *ws.shape[1:])
|
| 80 |
+
|
| 81 |
+
# Interpolation.
|
| 82 |
+
grid = []
|
| 83 |
+
for yi in range(grid_h):
|
| 84 |
+
row = []
|
| 85 |
+
for xi in range(grid_w):
|
| 86 |
+
x = np.arange(-num_keyframes * wraps, num_keyframes * (wraps + 1))
|
| 87 |
+
y = np.tile(ws[yi][xi].cpu().numpy(), [wraps * 2 + 1, 1, 1])
|
| 88 |
+
interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=0)
|
| 89 |
+
row.append(interp)
|
| 90 |
+
grid.append(row)
|
| 91 |
+
|
| 92 |
+
# Render video.
|
| 93 |
+
video_out = imageio.get_writer(mp4, mode='I', fps=60, codec='libx264')
|
| 94 |
+
for frame_idx in tqdm(range(num_keyframes * w_frames)):
|
| 95 |
+
imgs = []
|
| 96 |
+
for yi in range(grid_h):
|
| 97 |
+
for xi in range(grid_w):
|
| 98 |
+
interp = grid[yi][xi]
|
| 99 |
+
w = torch.from_numpy(interp(frame_idx / w_frames)).to(device)
|
| 100 |
+
img = G.synthesis(ws=w.unsqueeze(0), noise_mode='const')[0]
|
| 101 |
+
imgs.append(img)
|
| 102 |
+
video_out.append_data(layout_grid(torch.stack(imgs), grid_w=grid_w, grid_h=grid_h))
|
| 103 |
+
video_out.close()
|
| 104 |
+
return 'ex.mp4'
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
choices=['4x2','2x1']
|
| 109 |
+
interface=gr.Interface(fn=predict, title="Brain MR Image Generation with StyleGAN-2",
|
| 110 |
+
description = "",
|
| 111 |
+
article = "Author: S.Serdar Helli",
|
| 112 |
+
inputs=[gr.inputs.Slider( minimum=16, maximum=2**10,label='Seed'),gr.inputs.Radio( choices=choices, default='4x2',label='Image Grid')],
|
| 113 |
+
outputs=gr.outputs.Video(label='Video'))
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
interface.launch(debug=True)
|