Spaces:
Running
Running
File size: 15,783 Bytes
ce3af93 3061ea7 ce3af93 e83b61c 3061ea7 e83b61c ce3af93 6a212af ce3af93 3061ea7 ce3af93 e83b61c 6a212af e83b61c ce3af93 4dc8140 152bf38 6a212af 3061ea7 6a212af 3061ea7 6a212af 3061ea7 6a212af 3061ea7 6a212af 3061ea7 6a212af 3061ea7 6a212af 3061ea7 ebe16a8 6a212af ebe16a8 152bf38 ebe16a8 152bf38 3061ea7 152bf38 3061ea7 6a212af 3061ea7 ebe16a8 152bf38 3061ea7 152bf38 3061ea7 6a212af 152bf38 ebe16a8 152bf38 ebe16a8 152bf38 ebe16a8 6a212af ebe16a8 152bf38 6a212af 152bf38 6a212af 152bf38 3061ea7 152bf38 3061ea7 152bf38 ebe16a8 152bf38 ebe16a8 6a212af ebe16a8 6a212af 152bf38 6a212af 152bf38 ebe16a8 152bf38 ebe16a8 152bf38 e83b61c 6a212af ce3af93 4dc8140 ce3af93 4dc8140 ce3af93 4dc8140 ce3af93 4dc8140 ce3af93 4dc8140 6a212af d8cecb5 6a212af 152bf38 6a212af d8cecb5 152bf38 6a212af 152bf38 d8cecb5 152bf38 6a212af ebe16a8 6a212af ebe16a8 152bf38 6a212af 4dc8140 ebe16a8 ce3af93 4dc8140 ebe16a8 4dc8140 6a212af 4dc8140 6a212af 4dc8140 ce3af93 4dc8140 ce3af93 d8cecb5 152bf38 d8cecb5 ce3af93 ebe16a8 ce3af93 6a212af ce3af93 6a212af ce3af93 d8cecb5 152bf38 ce3af93 d8cecb5 152bf38 6a212af 152bf38 6a212af 152bf38 6a212af d8cecb5 6a212af 3061ea7 6a212af 3061ea7 6a212af 152bf38 3061ea7 6a212af 152bf38 e83b61c 6a212af d8cecb5 3061ea7 6a212af 967c6ea 152bf38 6a212af 967c6ea 6a212af e83b61c d8cecb5 152bf38 d8cecb5 152bf38 6a212af 152bf38 5d2ac6e 6a212af 152bf38 5d2ac6e ddd74f4 6a212af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import io
import json
import zipfile
import mimetypes
from typing import Any, Dict, List, Optional, Tuple
import requests
import gradio as gr
from openai import OpenAI
# --------------------- Конфигурация ---------------------
NV_API_KEY = os.environ.get("NV_API_KEY")
NV_BASE_URL = os.environ.get("NV_BASE_URL", "https://integrate.api.nvidia.com/v1")
NV_VLM_URL = os.environ.get("NV_VLM_URL", "https://ai.api.nvidia.com/v1/vlm/microsoft/florence-2")
NVCF_ASSETS_URL = "https://api.nvcf.nvidia.com/v2/nvcf/assets"
if not NV_API_KEY:
raise RuntimeError("NV_API_KEY не задан. В HF Space: Settings → Secrets → NV_API_KEY")
llm = OpenAI(base_url=NV_BASE_URL, api_key=NV_API_KEY)
# --------------------- Florence utils ---------------------
def _guess_mime(path: str) -> str:
return mimetypes.guess_type(path)[0] or "image/jpeg"
def nvcf_upload_asset(image_path: str, description: str = "Chat image") -> str:
auth = requests.post(
NVCF_ASSETS_URL,
headers={
"Authorization": f"Bearer {NV_API_KEY}",
"Content-Type": "application/json",
"accept": "application/json",
},
json={"contentType": _guess_mime(image_path), "description": description},
timeout=30,
)
auth.raise_for_status()
up_url = auth.json()["uploadUrl"]
asset_id = str(auth.json()["assetId"])
with open(image_path, "rb") as f:
put = requests.put(
up_url,
data=f,
headers={
"x-amz-meta-nvcf-asset-description": description,
"content-type": _guess_mime(image_path),
},
timeout=300,
)
put.raise_for_status()
return asset_id
def _vlm_content(task_token: str, asset_id: str, text_prompt: Optional[str] = None) -> str:
parts = [task_token]
if text_prompt and text_prompt.strip():
parts.append(text_prompt.strip())
parts.append(f'<img src="data:image/jpeg;asset_id,{asset_id}" />')
return "".join(parts)
PRIORITY_TEXT_KEYS = [
"more_detailed_caption", "detailed_caption", "caption",
"generated_text", "text", "ocr", "description",
]
def _deep_text_candidates(obj: Any) -> List[str]:
out = []
def walk(o):
if isinstance(o, dict):
for k in PRIORITY_TEXT_KEYS:
if k in o and isinstance(o[k], str) and o[k].strip():
out.append(o[k].strip())
for v in o.values():
walk(v)
elif isinstance(o, list):
for it in o:
walk(it)
elif isinstance(o, str):
if o.strip():
out.append(o.strip())
walk(obj)
return out
def _debug_dump_from_response(resp: requests.Response) -> str:
lines = []
data = resp.content
ct = (resp.headers.get("content-type") or "").lower()
lines.append("=== Florence HTTP Response ===")
lines.append(f"status: {resp.status_code}")
lines.append(f"content-type: {ct}")
lines.append(f"bytes: {len(data)}")
if "application/json" in ct and not data.startswith(b"PK"):
try:
raw = resp.text
except Exception:
raw = data.decode("utf-8", errors="ignore")
lines.append("--- RAW JSON ---")
lines.append(raw)
return "\n".join(lines)
if data.startswith(b"PK") or "zip" in ct or "octet-stream" in ct:
lines.append("--- ZIP CONTENTS ---")
try:
with zipfile.ZipFile(io.BytesIO(data), "r") as z:
for name in z.namelist():
lines.append(f"* {name}")
for name in z.namelist():
low = name.lower()
if low.endswith(".json") or low.endswith(".txt"):
try:
with z.open(name) as f:
raw = f.read().decode("utf-8", errors="ignore")
lines.append(f"\n--- FILE: {name} ---\n{raw}")
except Exception as e:
lines.append(f"\n--- FILE: {name} --- [read error: {e}]")
except Exception as e:
lines.append(f"[zip parse error: {e}]")
return "\n".join(lines)
try:
txt = data.decode("utf-8", errors="ignore")
except Exception:
txt = "[binary body]"
lines.append("--- RAW BODY ---")
lines.append(txt)
return "\n".join(lines)
def _parse_vlm_text(resp: requests.Response) -> str:
data = resp.content
ct = (resp.headers.get("content-type") or "").lower()
if "application/json" in ct and not data.startswith(b"PK"):
try:
obj = resp.json()
cands = _deep_text_candidates(obj)
return cands[0] if cands else ""
except Exception:
return ""
if data.startswith(b"PK") or "zip" in ct or "octet-stream" in ct:
try:
with zipfile.ZipFile(io.BytesIO(data), "r") as z:
for name in z.namelist():
if not name.lower().endswith(".json"):
continue
try:
with z.open(name) as f:
obj = json.loads(f.read().decode("utf-8", errors="ignore"))
cands = _deep_text_candidates(obj)
if cands:
return cands[0]
except Exception:
pass
for name in z.namelist():
if name.lower().endswith(".txt"):
try:
with z.open(name) as f:
txt = f.read().decode("utf-8", errors="ignore").strip()
if txt:
return txt
except Exception:
pass
except Exception:
return ""
try:
return data.decode("utf-8", errors="ignore").strip()
except Exception:
return ""
def _call_florence(task_token: str, asset_id: str, text_prompt: Optional[str] = None) -> Tuple[str, str]:
content = _vlm_content(task_token, asset_id, text_prompt)
payload = {"messages": [{"role": "user", "content": content}]}
headers = {
"Authorization": f"Bearer {NV_API_KEY}",
"Accept": "application/zip, application/json, */*",
"Content-Type": "application/json",
"NVCF-INPUT-ASSET-REFERENCES": asset_id,
"NVCF-FUNCTION-ASSET-IDS": asset_id,
}
resp = requests.post(NV_VLM_URL, headers=headers, json=payload, timeout=300)
raw_dump = _debug_dump_from_response(resp) if resp is not None else "[no response]"
if not resp.ok:
return f"[VLM HTTP {resp.status_code}]", raw_dump
text = _parse_vlm_text(resp)
return text, raw_dump
def _is_good(text: str) -> bool:
return isinstance(text, str) and len(text.strip()) >= 3 and "изображений-результатов" not in text.lower()
def get_caption_with_debug(image_path: str) -> Tuple[str, str, str]:
asset_id = nvcf_upload_asset(image_path)
attempts = [
("<MORE_DETAILED_CAPTION>", None),
("<DETAILED_CAPTION>", None),
("<CAPTION>", None),
("<OCR>", None),
]
debug_parts = []
for token, prompt in attempts:
text, raw_dump = _call_florence(token, asset_id, prompt)
debug_parts.append(f"=== Attempt {token} ===\n{raw_dump}\n")
if _is_good(text):
return text, asset_id, "\n".join(debug_parts)
return "", asset_id, "\n".join(debug_parts)
# --------------------- LLM streaming utils ---------------------
def _extract_text_from_stream_chunk(chunk: Any) -> str:
try:
if hasattr(chunk, "choices"):
choices = getattr(chunk, "choices")
if choices:
c0 = choices[0]
delta = getattr(c0, "delta", None)
if delta is not None:
txt = getattr(delta, "reasoning_content", None) or getattr(delta, "content", None)
if txt:
return str(txt)
text_attr = getattr(c0, "text", None)
if text_attr:
return str(text_attr)
if isinstance(chunk, dict):
choices = chunk.get("choices") or []
if choices:
delta = choices[0].get("delta") or {}
return str(delta.get("content") or delta.get("reasoning_content") or choices[0].get("text") or "")
except Exception:
pass
return ""
# --------------------- Чат-логика ---------------------
def respond(
message: Dict[str, Any],
chat_history: List[Dict[str, str]],
last_caption: str,
last_asset_id: str,
last_debug: str
):
text = (message or {}).get("text", "") if isinstance(message, dict) else str(message or "")
files = (message or {}).get("files", []) if isinstance(message, dict) else []
def first_image_path(files) -> Optional[str]:
for f in files:
if isinstance(f, dict) and f.get("path"):
mt = f.get("mime_type") or _guess_mime(f["path"])
if mt.startswith("image/"):
return f["path"]
elif isinstance(f, str):
if _guess_mime(f).startswith("image/"):
return f
return None
img_path = first_image_path(files)
parts = []
if text and text.strip():
parts.append(text.strip())
if img_path:
parts.append("🖼️ [изображение]")
user_visible = "\n".join(parts) if parts else "🖐️"
chat_history = chat_history or []
chat_history.append({"role": "user", "content": user_visible})
chat_history.append({"role": "assistant", "content": ""})
yield {"text": "", "files": []}, chat_history, last_caption, last_asset_id, (last_debug or "")
caption = last_caption or ""
asset_id = last_asset_id or ""
debug_raw = last_debug or ""
if img_path:
chat_history[-1]["content"] = "🔎 Обрабатываю изображение во Florence…"
yield {"text": "", "files": []}, chat_history, caption, asset_id, (debug_raw or "")
try:
caption, asset_id, debug_raw = get_caption_with_debug(img_path)
except Exception as e:
caption, debug_raw = "", f"[Florence error] {e}"
if caption:
system_prompt = (
"You are a helpful multimodal assistant. "
"Use the provided 'More Detailed Caption' as visual context. "
"If something is not visible or uncertain, say so.\n\n"
"Image Caption START >>>\n"
f"{caption}\n"
"<<< Image Caption END."
)
else:
system_prompt = (
"You are a helpful assistant. "
"If the user refers to an image but no caption is available, ask them to reattach the image."
)
user_text_for_llm = text or ("Describe the attached image." if caption else "Hi")
assistant_accum = ""
try:
stream = llm.chat.completions.create(
model="openai/gpt-oss-120b",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_text_for_llm}
],
temperature=0.7,
top_p=1.0,
max_tokens=768,
stream=True,
)
for chunk in stream:
piece = _extract_text_from_stream_chunk(chunk)
if not piece:
continue
assistant_accum += piece
chat_history[-1]["content"] = assistant_accum
yield {"text": "", "files": []}, chat_history, caption, asset_id, (debug_raw or "")
except Exception:
try:
resp = llm.chat.completions.create(
model="openai/gpt-oss-120b",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_text_for_llm}
],
temperature=0.7,
top_p=1.0,
max_tokens=768,
stream=False,
)
final_text = ""
if hasattr(resp, "choices"):
try:
final_text = getattr(resp.choices[0].message, "content", "") or getattr(resp.choices[0], "text", "") or ""
except Exception:
final_text = str(resp)
elif isinstance(resp, dict):
choices = resp.get("choices", [])
if choices:
m = choices[0].get("message") or choices[0]
final_text = m.get("content") or m.get("text") or str(m)
else:
final_text = str(resp)
else:
final_text = str(resp)
chat_history[-1]["content"] = final_text
yield {"text": "", "files": []}, chat_history, caption, asset_id, (debug_raw or "")
except Exception as e2:
chat_history[-1]["content"] = f"[Ошибка LLM: {e2}]"
yield {"text": "", "files": []}, chat_history, caption, asset_id, (debug_raw or "")
# --------------------- Интерфейс ---------------------
messenger_css = """
:root {
--radius-xl: 16px;
}
.gradio-container { max-width: 780px !important; margin: auto; }
#title { text-align: center; padding: 8px 0 10px; font-size: 18px; }
#chat-wrap { border: 1px solid rgba(0,0,0,0.07); border-radius: var(--radius-xl); overflow: hidden; }
#chat { height: 520px; }
#bottom-bar { position: sticky; bottom: 0; background: var(--body-background-fill); border-top: 1px solid rgba(0,0,0,0.06); padding: 8px; display: flex; gap: 8px; align-items: center; }
#send { min-width: 42px; max-width: 42px; height: 42px; border-radius: 999px; }
#msg .mm-wrap { border: 1px solid rgba(0,0,0,0.08); border-radius: 999px; }
#raw-wrap .wrap>label { font-weight: 600; }
"""
theme = gr.themes.Soft(
primary_hue="cyan",
neutral_hue="slate",
).set(
button_large_radius="999px",
button_small_radius="999px",
block_radius="16px",
)
with gr.Blocks(theme=theme, css=messenger_css, analytics_enabled=False) as demo:
gr.Markdown("✨ <div id='title'>Визуальный чат: Florence → GPT‑OSS</div>")
caption_state = gr.State(value="")
asset_state = gr.State(value="")
debug_state = gr.State(value="")
with gr.Group(elem_id="chat-wrap"):
chatbot = gr.Chatbot(label="", height=520, elem_id="chat", type="messages")
with gr.Row(elem_id="bottom-bar"):
msg = gr.MultimodalTextbox(
show_label=False,
placeholder="Напишите сообщение… (иконка слева — добавить изображение)",
elem_id="msg",
)
send = gr.Button("➤", variant="primary", elem_id="send")
with gr.Accordion("Raw Florence output", open=True, elem_id="raw-wrap"):
raw_out = gr.Textbox(
label="",
value="",
lines=14,
show_copy_button=True
)
msg.submit(
respond,
inputs=[msg, chatbot, caption_state, asset_state, debug_state],
outputs=[msg, chatbot, caption_state, asset_state, raw_out]
)
send.click(
respond,
inputs=[msg, chatbot, caption_state, asset_state, debug_state],
outputs=[msg, chatbot, caption_state, asset_state, raw_out]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), share=False) |