Spaces:
Running
on
Zero
Running
on
Zero
History v1
Browse files
app.py
CHANGED
|
@@ -12,13 +12,17 @@ from PIL import Image, PngImagePlugin
|
|
| 12 |
from datetime import datetime
|
| 13 |
from diffusers.models import AutoencoderKL
|
| 14 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
DESCRIPTION = "PonyDiffusion V6 XL"
|
| 20 |
if not torch.cuda.is_available():
|
| 21 |
-
DESCRIPTION += "\n
|
|
|
|
| 22 |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
| 23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 24 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
|
@@ -27,7 +31,6 @@ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
|
| 27 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
| 28 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 29 |
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
| 30 |
-
|
| 31 |
MODEL = os.getenv(
|
| 32 |
"MODEL",
|
| 33 |
"https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors",
|
|
@@ -38,6 +41,8 @@ torch.backends.cudnn.benchmark = False
|
|
| 38 |
|
| 39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 40 |
|
|
|
|
|
|
|
| 41 |
|
| 42 |
def load_pipeline(model_name):
|
| 43 |
vae = AutoencoderKL.from_pretrained(
|
|
@@ -49,7 +54,6 @@ def load_pipeline(model_name):
|
|
| 49 |
if MODEL.endswith(".safetensors")
|
| 50 |
else StableDiffusionXLPipeline.from_pretrained
|
| 51 |
)
|
| 52 |
-
|
| 53 |
pipe = pipeline(
|
| 54 |
model_name,
|
| 55 |
vae=vae,
|
|
@@ -60,11 +64,9 @@ def load_pipeline(model_name):
|
|
| 60 |
use_auth_token=HF_TOKEN,
|
| 61 |
variant="fp16",
|
| 62 |
)
|
| 63 |
-
|
| 64 |
pipe.to(device)
|
| 65 |
return pipe
|
| 66 |
|
| 67 |
-
|
| 68 |
@spaces.GPU
|
| 69 |
def generate(
|
| 70 |
prompt: str,
|
|
@@ -82,20 +84,16 @@ def generate(
|
|
| 82 |
progress=gr.Progress(track_tqdm=True),
|
| 83 |
) -> Image:
|
| 84 |
generator = utils.seed_everything(seed)
|
| 85 |
-
|
| 86 |
width, height = utils.aspect_ratio_handler(
|
| 87 |
-
aspect_ratio_selector,
|
| 88 |
-
custom_width,
|
| 89 |
-
custom_height,
|
| 90 |
)
|
| 91 |
-
|
| 92 |
width, height = utils.preprocess_image_dimensions(width, height)
|
| 93 |
-
|
| 94 |
backup_scheduler = pipe.scheduler
|
| 95 |
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
|
| 96 |
|
| 97 |
if use_upscaler:
|
| 98 |
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
|
|
|
| 99 |
metadata = {
|
| 100 |
"prompt": prompt,
|
| 101 |
"negative_prompt": negative_prompt,
|
|
@@ -117,6 +115,7 @@ def generate(
|
|
| 117 |
}
|
| 118 |
else:
|
| 119 |
metadata["use_upscaler"] = None
|
|
|
|
| 120 |
logger.info(json.dumps(metadata, indent=4))
|
| 121 |
|
| 122 |
try:
|
|
@@ -154,12 +153,34 @@ def generate(
|
|
| 154 |
output_type="pil",
|
| 155 |
).images
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
if images and IS_COLAB:
|
| 158 |
for image in images:
|
| 159 |
filepath = utils.save_image(image, metadata, OUTPUT_DIR)
|
| 160 |
logger.info(f"Image saved as {filepath} with metadata")
|
| 161 |
|
| 162 |
-
return images, metadata
|
|
|
|
| 163 |
except Exception as e:
|
| 164 |
logger.exception(f"An error occurred: {e}")
|
| 165 |
raise
|
|
@@ -169,7 +190,6 @@ def generate(
|
|
| 169 |
pipe.scheduler = backup_scheduler
|
| 170 |
utils.free_memory()
|
| 171 |
|
| 172 |
-
|
| 173 |
if torch.cuda.is_available():
|
| 174 |
pipe = load_pipeline(MODEL)
|
| 175 |
logger.info("Loaded on Device!")
|
|
@@ -178,52 +198,32 @@ else:
|
|
| 178 |
|
| 179 |
with gr.Blocks(css="style.css") as demo:
|
| 180 |
title = gr.HTML(
|
| 181 |
-
f"""<h1
|
| 182 |
-
elem_id="title",
|
| 183 |
-
)
|
| 184 |
-
gr.Markdown(
|
| 185 |
-
f"""Gradio demo for ([Pony Diffusion V6]https://civitai.com/models/257749/pony-diffusion-v6-xl/)""",
|
| 186 |
-
elem_id="subtitle",
|
| 187 |
)
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
)
|
| 193 |
-
with gr.Group():
|
| 194 |
-
with gr.Row():
|
| 195 |
-
prompt = gr.Text(
|
| 196 |
label="Prompt",
|
| 197 |
show_label=False,
|
| 198 |
-
max_lines=
|
| 199 |
placeholder="Enter your prompt",
|
| 200 |
-
container=False,
|
| 201 |
)
|
| 202 |
-
|
| 203 |
-
"
|
| 204 |
-
|
| 205 |
-
|
|
|
|
| 206 |
)
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
max_lines=5,
|
| 217 |
-
placeholder="Enter a negative prompt",
|
| 218 |
-
value=""
|
| 219 |
-
)
|
| 220 |
-
aspect_ratio_selector = gr.Radio(
|
| 221 |
-
label="Aspect Ratio",
|
| 222 |
-
choices=config.aspect_ratios,
|
| 223 |
-
value="1024 x 1024",
|
| 224 |
-
container=True,
|
| 225 |
-
)
|
| 226 |
-
with gr.Group(visible=False) as custom_resolution:
|
| 227 |
with gr.Row():
|
| 228 |
custom_width = gr.Slider(
|
| 229 |
label="Width",
|
|
@@ -239,125 +239,126 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 239 |
step=8,
|
| 240 |
value=1024,
|
| 241 |
)
|
| 242 |
-
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
|
| 243 |
-
with gr.Row() as upscaler_row:
|
| 244 |
-
upscaler_strength = gr.Slider(
|
| 245 |
-
label="Strength",
|
| 246 |
-
minimum=0,
|
| 247 |
-
maximum=1,
|
| 248 |
-
step=0.05,
|
| 249 |
-
value=0.55,
|
| 250 |
-
visible=False,
|
| 251 |
-
)
|
| 252 |
-
upscale_by = gr.Slider(
|
| 253 |
-
label="Upscale by",
|
| 254 |
-
minimum=1,
|
| 255 |
-
maximum=1.5,
|
| 256 |
-
step=0.1,
|
| 257 |
-
value=1.5,
|
| 258 |
-
visible=False,
|
| 259 |
-
)
|
| 260 |
|
| 261 |
-
sampler = gr.Dropdown(
|
| 262 |
-
label="Sampler",
|
| 263 |
-
choices=config.sampler_list,
|
| 264 |
-
interactive=True,
|
| 265 |
-
value="DPM++ 2M SDE Karras",
|
| 266 |
-
)
|
| 267 |
-
with gr.Row():
|
| 268 |
-
seed = gr.Slider(
|
| 269 |
-
label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0
|
| 270 |
-
)
|
| 271 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 272 |
-
with gr.Group():
|
| 273 |
with gr.Row():
|
| 274 |
guidance_scale = gr.Slider(
|
| 275 |
-
label="Guidance
|
| 276 |
-
minimum=1,
|
| 277 |
-
maximum=12,
|
| 278 |
-
step=0.1,
|
| 279 |
-
value=7.0,
|
| 280 |
)
|
| 281 |
num_inference_steps = gr.Slider(
|
| 282 |
-
label="
|
| 283 |
minimum=1,
|
| 284 |
-
maximum=
|
| 285 |
step=1,
|
| 286 |
-
value=
|
| 287 |
)
|
| 288 |
-
with gr.Accordion(label="Generation Parameters", open=False):
|
| 289 |
-
gr_metadata = gr.JSON(label="Metadata", show_label=False)
|
| 290 |
-
gr.Examples(
|
| 291 |
-
examples=config.examples,
|
| 292 |
-
inputs=prompt,
|
| 293 |
-
outputs=[result, gr_metadata],
|
| 294 |
-
fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
|
| 295 |
-
cache_examples=CACHE_EXAMPLES,
|
| 296 |
-
)
|
| 297 |
-
use_upscaler.change(
|
| 298 |
-
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
|
| 299 |
-
inputs=use_upscaler,
|
| 300 |
-
outputs=[upscaler_strength, upscale_by],
|
| 301 |
-
queue=False,
|
| 302 |
-
api_name=False,
|
| 303 |
-
)
|
| 304 |
-
aspect_ratio_selector.change(
|
| 305 |
-
fn=lambda x: gr.update(visible=x == "Custom"),
|
| 306 |
-
inputs=aspect_ratio_selector,
|
| 307 |
-
outputs=custom_resolution,
|
| 308 |
-
queue=False,
|
| 309 |
-
api_name=False,
|
| 310 |
-
)
|
| 311 |
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
)
|
| 363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from datetime import datetime
|
| 13 |
from diffusers.models import AutoencoderKL
|
| 14 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
| 15 |
+
from collections import deque
|
| 16 |
+
import base64
|
| 17 |
+
from io import BytesIO
|
| 18 |
|
| 19 |
logging.basicConfig(level=logging.INFO)
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
|
| 22 |
DESCRIPTION = "PonyDiffusion V6 XL"
|
| 23 |
if not torch.cuda.is_available():
|
| 24 |
+
DESCRIPTION += "\n\nRunning on CPU 🥶 This demo does not work on CPU."
|
| 25 |
+
|
| 26 |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
| 27 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 28 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
|
|
|
| 31 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
| 32 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 33 |
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
|
|
|
| 34 |
MODEL = os.getenv(
|
| 35 |
"MODEL",
|
| 36 |
"https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors",
|
|
|
|
| 41 |
|
| 42 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 43 |
|
| 44 |
+
MAX_HISTORY_SIZE = 10
|
| 45 |
+
image_history = deque(maxlen=MAX_HISTORY_SIZE)
|
| 46 |
|
| 47 |
def load_pipeline(model_name):
|
| 48 |
vae = AutoencoderKL.from_pretrained(
|
|
|
|
| 54 |
if MODEL.endswith(".safetensors")
|
| 55 |
else StableDiffusionXLPipeline.from_pretrained
|
| 56 |
)
|
|
|
|
| 57 |
pipe = pipeline(
|
| 58 |
model_name,
|
| 59 |
vae=vae,
|
|
|
|
| 64 |
use_auth_token=HF_TOKEN,
|
| 65 |
variant="fp16",
|
| 66 |
)
|
|
|
|
| 67 |
pipe.to(device)
|
| 68 |
return pipe
|
| 69 |
|
|
|
|
| 70 |
@spaces.GPU
|
| 71 |
def generate(
|
| 72 |
prompt: str,
|
|
|
|
| 84 |
progress=gr.Progress(track_tqdm=True),
|
| 85 |
) -> Image:
|
| 86 |
generator = utils.seed_everything(seed)
|
|
|
|
| 87 |
width, height = utils.aspect_ratio_handler(
|
| 88 |
+
aspect_ratio_selector, custom_width, custom_height,
|
|
|
|
|
|
|
| 89 |
)
|
|
|
|
| 90 |
width, height = utils.preprocess_image_dimensions(width, height)
|
|
|
|
| 91 |
backup_scheduler = pipe.scheduler
|
| 92 |
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
|
| 93 |
|
| 94 |
if use_upscaler:
|
| 95 |
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
| 96 |
+
|
| 97 |
metadata = {
|
| 98 |
"prompt": prompt,
|
| 99 |
"negative_prompt": negative_prompt,
|
|
|
|
| 115 |
}
|
| 116 |
else:
|
| 117 |
metadata["use_upscaler"] = None
|
| 118 |
+
|
| 119 |
logger.info(json.dumps(metadata, indent=4))
|
| 120 |
|
| 121 |
try:
|
|
|
|
| 153 |
output_type="pil",
|
| 154 |
).images
|
| 155 |
|
| 156 |
+
if images:
|
| 157 |
+
for image in images:
|
| 158 |
+
# Create thumbnail
|
| 159 |
+
thumbnail = image.copy()
|
| 160 |
+
thumbnail.thumbnail((256, 256))
|
| 161 |
+
|
| 162 |
+
# Convert thumbnail to base64
|
| 163 |
+
buffered = BytesIO()
|
| 164 |
+
thumbnail.save(buffered, format="PNG")
|
| 165 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 166 |
+
|
| 167 |
+
# Add to history
|
| 168 |
+
image_history.appendleft({
|
| 169 |
+
"thumbnail": f"data:image/png;base64,{img_str}",
|
| 170 |
+
"prompt": prompt,
|
| 171 |
+
"negative_prompt": negative_prompt,
|
| 172 |
+
"seed": seed,
|
| 173 |
+
"width": width,
|
| 174 |
+
"height": height,
|
| 175 |
+
})
|
| 176 |
+
|
| 177 |
if images and IS_COLAB:
|
| 178 |
for image in images:
|
| 179 |
filepath = utils.save_image(image, metadata, OUTPUT_DIR)
|
| 180 |
logger.info(f"Image saved as {filepath} with metadata")
|
| 181 |
|
| 182 |
+
return images, metadata, list(image_history)
|
| 183 |
+
|
| 184 |
except Exception as e:
|
| 185 |
logger.exception(f"An error occurred: {e}")
|
| 186 |
raise
|
|
|
|
| 190 |
pipe.scheduler = backup_scheduler
|
| 191 |
utils.free_memory()
|
| 192 |
|
|
|
|
| 193 |
if torch.cuda.is_available():
|
| 194 |
pipe = load_pipeline(MODEL)
|
| 195 |
logger.info("Loaded on Device!")
|
|
|
|
| 198 |
|
| 199 |
with gr.Blocks(css="style.css") as demo:
|
| 200 |
title = gr.HTML(
|
| 201 |
+
f"""<h1>{DESCRIPTION}</h1>"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
)
|
| 203 |
+
|
| 204 |
+
with gr.Row():
|
| 205 |
+
with gr.Column(scale=2):
|
| 206 |
+
prompt = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
label="Prompt",
|
| 208 |
show_label=False,
|
| 209 |
+
max_lines=2,
|
| 210 |
placeholder="Enter your prompt",
|
|
|
|
| 211 |
)
|
| 212 |
+
negative_prompt = gr.Textbox(
|
| 213 |
+
label="Negative Prompt",
|
| 214 |
+
show_label=False,
|
| 215 |
+
max_lines=2,
|
| 216 |
+
placeholder="Enter a negative prompt",
|
| 217 |
)
|
| 218 |
+
|
| 219 |
+
with gr.Row():
|
| 220 |
+
seed = gr.Number(
|
| 221 |
+
label="Seed",
|
| 222 |
+
value=0,
|
| 223 |
+
precision=0,
|
| 224 |
+
)
|
| 225 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 226 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
with gr.Row():
|
| 228 |
custom_width = gr.Slider(
|
| 229 |
label="Width",
|
|
|
|
| 239 |
step=8,
|
| 240 |
value=1024,
|
| 241 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
with gr.Row():
|
| 244 |
guidance_scale = gr.Slider(
|
| 245 |
+
label="Guidance Scale", minimum=0, maximum=20, step=0.1, value=7
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
)
|
| 247 |
num_inference_steps = gr.Slider(
|
| 248 |
+
label="Num Inference Steps",
|
| 249 |
minimum=1,
|
| 250 |
+
maximum=100,
|
| 251 |
step=1,
|
| 252 |
+
value=30,
|
| 253 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
+
with gr.Row():
|
| 256 |
+
sampler = gr.Dropdown(
|
| 257 |
+
label="Sampler",
|
| 258 |
+
choices=[
|
| 259 |
+
"DPM++ 2M SDE Karras",
|
| 260 |
+
"DPM++ 2M SDE",
|
| 261 |
+
"Euler a",
|
| 262 |
+
"Euler",
|
| 263 |
+
"DPM++ 2M Karras",
|
| 264 |
+
"DPM++ 2M",
|
| 265 |
+
"LMS Karras",
|
| 266 |
+
"Heun",
|
| 267 |
+
"DPM++ SDE Karras",
|
| 268 |
+
"DPM++ SDE",
|
| 269 |
+
"DPM2 Karras",
|
| 270 |
+
"DPM2",
|
| 271 |
+
"DPM2 a Karras",
|
| 272 |
+
"DPM2 a",
|
| 273 |
+
"LMS",
|
| 274 |
+
"DDIM",
|
| 275 |
+
"PLMS",
|
| 276 |
+
],
|
| 277 |
+
value="DPM++ 2M SDE Karras",
|
| 278 |
+
)
|
| 279 |
+
aspect_ratio_selector = gr.Dropdown(
|
| 280 |
+
label="Aspect Ratio",
|
| 281 |
+
choices=[
|
| 282 |
+
"1024 x 1024",
|
| 283 |
+
"1152 x 896",
|
| 284 |
+
"896 x 1152",
|
| 285 |
+
"1216 x 832",
|
| 286 |
+
"832 x 1216",
|
| 287 |
+
"1344 x 768",
|
| 288 |
+
"768 x 1344",
|
| 289 |
+
"1536 x 640",
|
| 290 |
+
"640 x 1536",
|
| 291 |
+
],
|
| 292 |
+
value="1024 x 1024",
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
with gr.Row():
|
| 296 |
+
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
|
| 297 |
+
upscaler_strength = gr.Slider(
|
| 298 |
+
label="Upscaler Strength",
|
| 299 |
+
minimum=0,
|
| 300 |
+
maximum=1,
|
| 301 |
+
step=0.05,
|
| 302 |
+
value=0.55,
|
| 303 |
+
)
|
| 304 |
+
upscale_by = gr.Slider(
|
| 305 |
+
label="Upscale By",
|
| 306 |
+
minimum=1,
|
| 307 |
+
maximum=4,
|
| 308 |
+
step=0.1,
|
| 309 |
+
value=1.5,
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
with gr.Column(scale=1):
|
| 313 |
+
output_image = gr.Image(label="Generated Image")
|
| 314 |
+
output_text = gr.JSON(label="Generation Info")
|
| 315 |
+
|
| 316 |
+
with gr.Row():
|
| 317 |
+
generate_button = gr.Button("Generate")
|
| 318 |
+
|
| 319 |
+
# Add the history component
|
| 320 |
+
history = gr.HTML(label="Generation History")
|
| 321 |
+
|
| 322 |
+
# Update the generate_button click event
|
| 323 |
+
generate_button.click(
|
| 324 |
+
generate,
|
| 325 |
+
inputs=[
|
| 326 |
+
prompt,
|
| 327 |
+
negative_prompt,
|
| 328 |
+
seed,
|
| 329 |
+
custom_width,
|
| 330 |
+
custom_height,
|
| 331 |
+
guidance_scale,
|
| 332 |
+
num_inference_steps,
|
| 333 |
+
sampler,
|
| 334 |
+
aspect_ratio_selector,
|
| 335 |
+
use_upscaler,
|
| 336 |
+
upscaler_strength,
|
| 337 |
+
upscale_by,
|
| 338 |
+
],
|
| 339 |
+
outputs=[output_image, output_text, history],
|
| 340 |
)
|
| 341 |
+
|
| 342 |
+
# Add a function to update the history display
|
| 343 |
+
def update_history(history_data):
|
| 344 |
+
html = "<div class='history-container'>"
|
| 345 |
+
for item in history_data:
|
| 346 |
+
html += f"""
|
| 347 |
+
<div class='history-item'>
|
| 348 |
+
<img src='{item['thumbnail']}' alt='Generated Image'>
|
| 349 |
+
<div class='history-info'>
|
| 350 |
+
<p><strong>Prompt:</strong> {item['prompt']}</p>
|
| 351 |
+
<p><strong>Negative Prompt:</strong> {item['negative_prompt']}</p>
|
| 352 |
+
<p><strong>Seed:</strong> {item['seed']}</p>
|
| 353 |
+
<p><strong>Size:</strong> {item['width']}x{item['height']}</p>
|
| 354 |
+
</div>
|
| 355 |
+
</div>
|
| 356 |
+
"""
|
| 357 |
+
html += "</div>"
|
| 358 |
+
return html
|
| 359 |
+
|
| 360 |
+
# Connect the update_history function to the history component
|
| 361 |
+
history.change(update_history, inputs=[history], outputs=[history])
|
| 362 |
+
|
| 363 |
+
demo.queue(concurrency_count=1, max_size=20)
|
| 364 |
+
demo.launch(debug=True)
|