File size: 11,258 Bytes
92d14a2
f1c6a3d
 
97f07be
f1c6a3d
e01f7c2
97f07be
f1c6a3d
92d14a2
 
 
 
97f07be
92d14a2
 
 
 
 
730f5a5
 
0c61c42
92d14a2
730f5a5
 
92d14a2
 
 
 
 
0c61c42
 
 
 
 
 
 
 
730f5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c61c42
 
 
 
 
 
 
730f5a5
c5343e6
730f5a5
92d14a2
c5343e6
92d14a2
 
 
 
 
0c61c42
92d14a2
 
730f5a5
 
92d14a2
 
 
730f5a5
 
92d14a2
0c61c42
 
730f5a5
0c61c42
c5343e6
92d14a2
 
730f5a5
 
 
 
 
 
 
 
 
 
 
0c61c42
 
730f5a5
0c61c42
c5343e6
730f5a5
 
92d14a2
730f5a5
 
c5343e6
 
 
730f5a5
 
 
0c61c42
 
 
 
c5343e6
0c61c42
730f5a5
 
0c61c42
 
730f5a5
af9c1e6
92d14a2
 
730f5a5
92d14a2
 
 
 
 
 
0c61c42
 
 
 
 
92d14a2
 
730f5a5
0c61c42
92d14a2
0c61c42
92d14a2
 
 
 
 
 
 
 
 
 
 
 
 
730f5a5
 
 
 
 
 
 
 
c5343e6
92d14a2
 
 
 
730f5a5
c5343e6
 
 
730f5a5
0c61c42
 
 
 
 
 
92d14a2
 
c5343e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92d14a2
 
c5343e6
92d14a2
c5343e6
 
 
92d14a2
 
0c61c42
730f5a5
0c61c42
c5343e6
 
 
 
 
 
 
 
 
 
 
730f5a5
92d14a2
af9c1e6
92d14a2
78d19ee
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

import os
import sys
from env import config_env


config_env()


import gradio as gr
from huggingface_hub import snapshot_download
import cv2 
import dotenv
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference_sam import segmentation_sam
from explanations import explain
from inference_resnet import get_triplet_model
from inference_beit import get_triplet_model_beit
import pathlib
import tensorflow as tf
from closest_sample import get_images

if not os.path.exists('images'):
    REPO_ID='Serrelab/image_examples_gradio'
    snapshot_download(repo_id=REPO_ID, token=os.environ.get('READ_TOKEN'),repo_type='dataset',local_dir='images')

if not os.path.exists('dataset'):
  REPO_ID='Serrelab/Fossils'
  token = os.environ.get('READ_TOKEN')
  print(f"Read token:{token}")
  if token is None:
     print("warning! A read token in env variables is needed for authentication.")
  snapshot_download(repo_id=REPO_ID, token=token,repo_type='dataset',local_dir='dataset')

def get_model(model_name):
   
        
    if model_name=='Mummified 170':
        n_classes = 170
        model = get_triplet_model(input_shape = (600, 600, 3),
                        embedding_units = 256,
                        embedding_depth = 2,
                        backbone_class=tf.keras.applications.ResNet50V2,
                        nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
        model.load_weights('model_classification/mummified-170.h5')
    elif model_name=='Rock 170':
        n_classes = 171
        model = get_triplet_model(input_shape = (600, 600, 3),
                        embedding_units = 256,
                        embedding_depth = 2,
                        backbone_class=tf.keras.applications.ResNet50V2,
                        nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
        model.load_weights('model_classification/rock-170.h5')
    elif model_name == 'Fossils 142':
        n_classes = 142
        model = get_triplet_model_beit(input_shape = (384, 384, 3),
                                  embedding_units = 256,
                                  embedding_depth = 2,
                                  n_classes = n_classes)
        model.load_weights('model_classification/fossil-142.h5')
    else:
        raise ValueError(f"Model name '{model_name}' is not recognized") 
    return model,n_classes


def segment_image(input_image):
    img = segmentation_sam(input_image)
    return img

def classify_image(input_image, model_name):
    #segmented_image = segment_image(input_image)
    if 'Rock 170' ==model_name:
        from inference_resnet import inference_resnet_finer
        model,n_classes= get_model(model_name)
        result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
        return result 
    elif 'Mummified 170' ==model_name:
        from inference_resnet import inference_resnet_finer
        model, n_classes= get_model(model_name)
        result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
        return result 
    if 'Fossils 142' ==model_name:
        from inference_beit import inference_resnet_finer_beit
        model,n_classes = get_model(model_name)
        result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
        return result
    return None

def get_embeddings(input_image,model_name):
    if 'Rock 170' ==model_name:
        from inference_resnet import inference_resnet_embedding
        model,n_classes= get_model(model_name)
        result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
        return result 
    elif 'Mummified 170' ==model_name:
        from inference_resnet import inference_resnet_embedding
        model, n_classes= get_model(model_name)
        result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
        return result 
    if 'Fossils 142' ==model_name:
        from inference_beit import inference_resnet_embedding_beit
        model,n_classes = get_model(model_name)
        result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
        return result
    return None
    

def find_closest(input_image,model_name):
    embedding = get_embeddings(input_image,model_name)
    classes, paths = get_images(embedding)
    #outputs = classes+paths
    return classes,paths

def explain_image(input_image,model_name):
    model,n_classes= get_model(model_name)
    if model_name=='Fossils 142':
        size = 384
    else:
        size = 600
    #saliency, integrated, smoothgrad,
    rise,avg = explain(model,input_image,size = size, n_classes=n_classes)
    #original =  saliency + integrated + smoothgrad 
    print('done')
    rise1,rise2,rise3,rise4,rise5,avg = rise[0],rise[1],rise[2],rise[3],rise[4],avg[0]
    return rise1,rise2,rise3,rise4,rise5,avg
    
#minimalist theme
with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
    
    with gr.Tab(" Florrissant Fossils"):
    
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input")
                classify_image_button = gr.Button("Classify Image")
            
            # with gr.Column():
            #     #segmented_image = gr.outputs.Image(label="SAM output",type='numpy')
            #     segmented_image=gr.Image(label="Segmented Image", type='numpy')
            #     segment_button = gr.Button("Segment Image")
            #     #classify_segmented_button = gr.Button("Classify Segmented Image")
                
            with gr.Column():
                model_name = gr.Dropdown(
                    ["Mummified 170", "Rock 170","Fossils 142"],
                    multiselect=False,
                    value="Fossils 142", # default option
                    label="Model",
                    interactive=True,
                )
                class_predicted = gr.Label(label='Class Predicted',num_top_classes=10)
               
        with gr.Row():
           
            paths = sorted(pathlib.Path('images/').rglob('*.jpg'))
            samples=[[path.as_posix()] for path in paths  if 'fossils' in  str(path) ][:19]
            examples_fossils = gr.Examples(samples, inputs=input_image,examples_per_page=10,label='Fossils Examples from the dataset')
            samples=[[path.as_posix()] for path in paths  if 'leaves' in  str(path) ][:19]
            examples_leaves = gr.Examples(samples, inputs=input_image,examples_per_page=5,label='Leaves Examples from the dataset')
            
        # with gr.Accordion("Using Diffuser"):
        #     with gr.Column(): 
        #         prompt = gr.Textbox(lines=1, label="Prompt")
        #         output_image = gr.Image(label="Output")
        #         generate_button = gr.Button("Generate Leave")    
        #     with gr.Column():
        #         class_predicted2 = gr.Label(label='Class Predicted from diffuser')
        #         classify_button = gr.Button("Classify Image")

        
        with gr.Accordion("Explanations "):
            gr.Markdown("Computing Explanations from the model")
            with gr.Row():
                #original_input = gr.Image(label="Original Frame")
                #saliency  = gr.Image(label="saliency")
                #gradcam = gr.Image(label='integraged gradients')
                #guided_gradcam = gr.Image(label='gradcam')
                #guided_backprop = gr.Image(label='guided backprop')
                rise1 = gr.Image(label = 'Rise1')
                rise2 = gr.Image(label = 'Rise2')
                rise3 = gr.Image(label = 'Rise3')
                rise4 = gr.Image(label = 'Rise4')
                rise5 = gr.Image(label = 'Rise5')
                avg = gr.Image(label = 'Avg')
            generate_explanations = gr.Button("Generate Explanations")
                
        # with gr.Accordion('Closest Images'):
        #     gr.Markdown("Finding the closest images in the dataset")
        #     with gr.Row():
        #         with gr.Column():
        #             label_closest_image_0 = gr.Markdown('')
        #             closest_image_0 = gr.Image(label='Closest Image',image_mode='contain',width=200, height=200)
        #         with gr.Column():
        #             label_closest_image_1 = gr.Markdown('')
        #             closest_image_1 = gr.Image(label='Second Closest Image',image_mode='contain',width=200, height=200)
        #         with gr.Column():
        #             label_closest_image_2 = gr.Markdown('')
        #             closest_image_2 = gr.Image(label='Third Closest Image',image_mode='contain',width=200, height=200)
        #         with gr.Column():
        #             label_closest_image_3 = gr.Markdown('')
        #             closest_image_3 = gr.Image(label='Forth Closest Image',image_mode='contain', width=200, height=200)
        #         with gr.Column():
        #             label_closest_image_4 = gr.Markdown('')
        #             closest_image_4 = gr.Image(label='Fifth Closest Image',image_mode='contain',width=200, height=200)
        #     find_closest_btn = gr.Button("Find Closest Images")
        with gr.Accordion('Closest Images'):
            gr.Markdown("Finding the closest images in the dataset")
            
            with gr.Row():
                gallery = gr.Gallery(label="Closest Images", show_label=False,elem_id="gallery",columns=[5], rows=[1],height='auto', allow_preview=True, preview=None)
                #.style(grid=[1, 5], height=200, width=200)

            find_closest_btn = gr.Button("Find Closest Images")
            
        #segment_button.click(segment_image, inputs=input_image, outputs=segmented_image)
        classify_image_button.click(classify_image, inputs=[input_image,model_name], outputs=class_predicted)
        generate_explanations.click(explain_image, inputs=[input_image,model_name], outputs=[rise1,rise2,rise3,rise4,rise5,avg]) #
        #find_closest_btn.click(find_closest, inputs=[input_image,model_name], outputs=[label_closest_image_0,label_closest_image_1,label_closest_image_2,label_closest_image_3,label_closest_image_4,closest_image_0,closest_image_1,closest_image_2,closest_image_3,closest_image_4])
        def update_outputs(input_image,model_name):
            labels, images = find_closest(input_image,model_name)
            #labels_html = "".join([f'<div style="display: inline-block; text-align: center; width: 18%;">{label}</div>' for label in labels])
            #labels_markdown = f"<div style='width: 100%; text-align: center;'>{labels_html}</div>"
            image_caption=[]
            for i in range(5):
                image_caption.append((images[i],labels[i]))
            return image_caption

        find_closest_btn.click(fn=update_outputs, inputs=[input_image,model_name], outputs=[gallery])
        #classify_segmented_button.click(classify_image, inputs=[segmented_image,model_name], outputs=class_predicted)
        
demo.queue()     # manage multiple incoming requests
   
if os.getenv('SYSTEM') == 'spaces':
    demo.launch(width='40%',auth=(os.environ.get('USERNAME'), os.environ.get('PASSWORD')))
else: 
    demo.launch()