Spaces:
Sleeping
Sleeping
File size: 11,258 Bytes
92d14a2 f1c6a3d 97f07be f1c6a3d e01f7c2 97f07be f1c6a3d 92d14a2 97f07be 92d14a2 730f5a5 0c61c42 92d14a2 730f5a5 92d14a2 0c61c42 730f5a5 0c61c42 730f5a5 c5343e6 730f5a5 92d14a2 c5343e6 92d14a2 0c61c42 92d14a2 730f5a5 92d14a2 730f5a5 92d14a2 0c61c42 730f5a5 0c61c42 c5343e6 92d14a2 730f5a5 0c61c42 730f5a5 0c61c42 c5343e6 730f5a5 92d14a2 730f5a5 c5343e6 730f5a5 0c61c42 c5343e6 0c61c42 730f5a5 0c61c42 730f5a5 af9c1e6 92d14a2 730f5a5 92d14a2 0c61c42 92d14a2 730f5a5 0c61c42 92d14a2 0c61c42 92d14a2 730f5a5 c5343e6 92d14a2 730f5a5 c5343e6 730f5a5 0c61c42 92d14a2 c5343e6 92d14a2 c5343e6 92d14a2 c5343e6 92d14a2 0c61c42 730f5a5 0c61c42 c5343e6 730f5a5 92d14a2 af9c1e6 92d14a2 78d19ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import os
import sys
from env import config_env
config_env()
import gradio as gr
from huggingface_hub import snapshot_download
import cv2
import dotenv
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference_sam import segmentation_sam
from explanations import explain
from inference_resnet import get_triplet_model
from inference_beit import get_triplet_model_beit
import pathlib
import tensorflow as tf
from closest_sample import get_images
if not os.path.exists('images'):
REPO_ID='Serrelab/image_examples_gradio'
snapshot_download(repo_id=REPO_ID, token=os.environ.get('READ_TOKEN'),repo_type='dataset',local_dir='images')
if not os.path.exists('dataset'):
REPO_ID='Serrelab/Fossils'
token = os.environ.get('READ_TOKEN')
print(f"Read token:{token}")
if token is None:
print("warning! A read token in env variables is needed for authentication.")
snapshot_download(repo_id=REPO_ID, token=token,repo_type='dataset',local_dir='dataset')
def get_model(model_name):
if model_name=='Mummified 170':
n_classes = 170
model = get_triplet_model(input_shape = (600, 600, 3),
embedding_units = 256,
embedding_depth = 2,
backbone_class=tf.keras.applications.ResNet50V2,
nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
model.load_weights('model_classification/mummified-170.h5')
elif model_name=='Rock 170':
n_classes = 171
model = get_triplet_model(input_shape = (600, 600, 3),
embedding_units = 256,
embedding_depth = 2,
backbone_class=tf.keras.applications.ResNet50V2,
nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
model.load_weights('model_classification/rock-170.h5')
elif model_name == 'Fossils 142':
n_classes = 142
model = get_triplet_model_beit(input_shape = (384, 384, 3),
embedding_units = 256,
embedding_depth = 2,
n_classes = n_classes)
model.load_weights('model_classification/fossil-142.h5')
else:
raise ValueError(f"Model name '{model_name}' is not recognized")
return model,n_classes
def segment_image(input_image):
img = segmentation_sam(input_image)
return img
def classify_image(input_image, model_name):
#segmented_image = segment_image(input_image)
if 'Rock 170' ==model_name:
from inference_resnet import inference_resnet_finer
model,n_classes= get_model(model_name)
result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
return result
elif 'Mummified 170' ==model_name:
from inference_resnet import inference_resnet_finer
model, n_classes= get_model(model_name)
result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
return result
if 'Fossils 142' ==model_name:
from inference_beit import inference_resnet_finer_beit
model,n_classes = get_model(model_name)
result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
return result
return None
def get_embeddings(input_image,model_name):
if 'Rock 170' ==model_name:
from inference_resnet import inference_resnet_embedding
model,n_classes= get_model(model_name)
result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
return result
elif 'Mummified 170' ==model_name:
from inference_resnet import inference_resnet_embedding
model, n_classes= get_model(model_name)
result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
return result
if 'Fossils 142' ==model_name:
from inference_beit import inference_resnet_embedding_beit
model,n_classes = get_model(model_name)
result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
return result
return None
def find_closest(input_image,model_name):
embedding = get_embeddings(input_image,model_name)
classes, paths = get_images(embedding)
#outputs = classes+paths
return classes,paths
def explain_image(input_image,model_name):
model,n_classes= get_model(model_name)
if model_name=='Fossils 142':
size = 384
else:
size = 600
#saliency, integrated, smoothgrad,
rise,avg = explain(model,input_image,size = size, n_classes=n_classes)
#original = saliency + integrated + smoothgrad
print('done')
rise1,rise2,rise3,rise4,rise5,avg = rise[0],rise[1],rise[2],rise[3],rise[4],avg[0]
return rise1,rise2,rise3,rise4,rise5,avg
#minimalist theme
with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
with gr.Tab(" Florrissant Fossils"):
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input")
classify_image_button = gr.Button("Classify Image")
# with gr.Column():
# #segmented_image = gr.outputs.Image(label="SAM output",type='numpy')
# segmented_image=gr.Image(label="Segmented Image", type='numpy')
# segment_button = gr.Button("Segment Image")
# #classify_segmented_button = gr.Button("Classify Segmented Image")
with gr.Column():
model_name = gr.Dropdown(
["Mummified 170", "Rock 170","Fossils 142"],
multiselect=False,
value="Fossils 142", # default option
label="Model",
interactive=True,
)
class_predicted = gr.Label(label='Class Predicted',num_top_classes=10)
with gr.Row():
paths = sorted(pathlib.Path('images/').rglob('*.jpg'))
samples=[[path.as_posix()] for path in paths if 'fossils' in str(path) ][:19]
examples_fossils = gr.Examples(samples, inputs=input_image,examples_per_page=10,label='Fossils Examples from the dataset')
samples=[[path.as_posix()] for path in paths if 'leaves' in str(path) ][:19]
examples_leaves = gr.Examples(samples, inputs=input_image,examples_per_page=5,label='Leaves Examples from the dataset')
# with gr.Accordion("Using Diffuser"):
# with gr.Column():
# prompt = gr.Textbox(lines=1, label="Prompt")
# output_image = gr.Image(label="Output")
# generate_button = gr.Button("Generate Leave")
# with gr.Column():
# class_predicted2 = gr.Label(label='Class Predicted from diffuser')
# classify_button = gr.Button("Classify Image")
with gr.Accordion("Explanations "):
gr.Markdown("Computing Explanations from the model")
with gr.Row():
#original_input = gr.Image(label="Original Frame")
#saliency = gr.Image(label="saliency")
#gradcam = gr.Image(label='integraged gradients')
#guided_gradcam = gr.Image(label='gradcam')
#guided_backprop = gr.Image(label='guided backprop')
rise1 = gr.Image(label = 'Rise1')
rise2 = gr.Image(label = 'Rise2')
rise3 = gr.Image(label = 'Rise3')
rise4 = gr.Image(label = 'Rise4')
rise5 = gr.Image(label = 'Rise5')
avg = gr.Image(label = 'Avg')
generate_explanations = gr.Button("Generate Explanations")
# with gr.Accordion('Closest Images'):
# gr.Markdown("Finding the closest images in the dataset")
# with gr.Row():
# with gr.Column():
# label_closest_image_0 = gr.Markdown('')
# closest_image_0 = gr.Image(label='Closest Image',image_mode='contain',width=200, height=200)
# with gr.Column():
# label_closest_image_1 = gr.Markdown('')
# closest_image_1 = gr.Image(label='Second Closest Image',image_mode='contain',width=200, height=200)
# with gr.Column():
# label_closest_image_2 = gr.Markdown('')
# closest_image_2 = gr.Image(label='Third Closest Image',image_mode='contain',width=200, height=200)
# with gr.Column():
# label_closest_image_3 = gr.Markdown('')
# closest_image_3 = gr.Image(label='Forth Closest Image',image_mode='contain', width=200, height=200)
# with gr.Column():
# label_closest_image_4 = gr.Markdown('')
# closest_image_4 = gr.Image(label='Fifth Closest Image',image_mode='contain',width=200, height=200)
# find_closest_btn = gr.Button("Find Closest Images")
with gr.Accordion('Closest Images'):
gr.Markdown("Finding the closest images in the dataset")
with gr.Row():
gallery = gr.Gallery(label="Closest Images", show_label=False,elem_id="gallery",columns=[5], rows=[1],height='auto', allow_preview=True, preview=None)
#.style(grid=[1, 5], height=200, width=200)
find_closest_btn = gr.Button("Find Closest Images")
#segment_button.click(segment_image, inputs=input_image, outputs=segmented_image)
classify_image_button.click(classify_image, inputs=[input_image,model_name], outputs=class_predicted)
generate_explanations.click(explain_image, inputs=[input_image,model_name], outputs=[rise1,rise2,rise3,rise4,rise5,avg]) #
#find_closest_btn.click(find_closest, inputs=[input_image,model_name], outputs=[label_closest_image_0,label_closest_image_1,label_closest_image_2,label_closest_image_3,label_closest_image_4,closest_image_0,closest_image_1,closest_image_2,closest_image_3,closest_image_4])
def update_outputs(input_image,model_name):
labels, images = find_closest(input_image,model_name)
#labels_html = "".join([f'<div style="display: inline-block; text-align: center; width: 18%;">{label}</div>' for label in labels])
#labels_markdown = f"<div style='width: 100%; text-align: center;'>{labels_html}</div>"
image_caption=[]
for i in range(5):
image_caption.append((images[i],labels[i]))
return image_caption
find_closest_btn.click(fn=update_outputs, inputs=[input_image,model_name], outputs=[gallery])
#classify_segmented_button.click(classify_image, inputs=[segmented_image,model_name], outputs=class_predicted)
demo.queue() # manage multiple incoming requests
if os.getenv('SYSTEM') == 'spaces':
demo.launch(width='40%',auth=(os.environ.get('USERNAME'), os.environ.get('PASSWORD')))
else:
demo.launch()
|