File size: 6,460 Bytes
c5343e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import tensorflow as tf
gpu_devices = tf.config.experimental.list_physical_devices('GPU')
if gpu_devices:
    tf.config.experimental.set_memory_growth(gpu_devices[0], True)
else:
    print(f"TensorFlow device: {gpu_devices}")

import os
import numpy as np
import keras
from PIL import Image
import keras_cv
from keras_cv_attention_models import beit
import matplotlib.pyplot as plt


#preprocessing
#TODO
num_classes = len(class_names)
AUTO = tf.data.AUTOTUNE
rand_augment = keras_cv.layers.RandAugment(value_range = (-1, 1), augmentations_per_image = 3, magnitude=0.5)

SIZE = 384
debug = None

def augmentations(x, crop_size=22, brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2):
    x = tf.cast(x, tf.float32)
    x = tf.image.random_crop(x, (tf.shape(x)[0], 100, 100, 3))
    x = tf.image.random_brightness(x, max_delta=brightness)
    x = tf.image.random_contrast(x, lower=1.0-contrast, upper=1+contrast)
    x = tf.image.random_saturation(x, lower=1.0-saturation, upper=1.0+saturation)
    x = tf.image.random_hue(x, max_delta=hue)
    x = tf.image.resize(x, (128, 128))
    x = tf.clip_by_value(x, 0.0, 255.0)
    x = tf.keras.applications.resnet_v2.preprocess_input(x)
    return x


def pad_gt(x):
  h, w = x.shape[-2:]
  padh = sam.image_encoder.img_size - h
  padw = sam.image_encoder.img_size - w
  x = F.pad(x, (0, padw, 0, padh))
  return x

def preprocess(img):

  img = np.array(img).astype(np.uint8)

  #assert img.max() > 127.0

  img_preprocess = predictor.transform.apply_image(img)
  intermediate_shape = img_preprocess.shape

  img_preprocess = torch.as_tensor(img_preprocess).cuda()
  img_preprocess = img_preprocess.permute(2, 0, 1).contiguous()[None, :, :, :]

  img_preprocess = sam.preprocess(img_preprocess)
  if len(intermediate_shape) == 3:
     intermediate_shape = intermediate_shape[:2]
  elif len(intermediate_shape) == 4:
     intermediate_shape = intermediate_shape[1:3]

  return img_preprocess, intermediate_shape



def normalize(img):
  img = img - tf.math.reduce_min(img)
  img = img / tf.math.reduce_max(img)
  img = img * 2.0 - 1.0
  return img

def smooth_mask(mask, ds=20):
  shape = tf.shape(mask)
  w, h = shape[0], shape[1]
  return tf.image.resize(tf.image.resize(mask, (ds, ds), method="bicubic"), (w, h), method="bicubic")

def resize(img):
  # default resize function for all pi outputs
  return tf.image.resize(img, (SIZE, SIZE), method="bicubic")

def pi(img, mask):
  img = tf.cast(img, tf.float32)

  shape = tf.shape(img)
  w, h = tf.cast(shape[0], tf.int64), tf.cast(shape[1], tf.int64)

  mask = smooth_mask(mask)
  mask = tf.reduce_mean(mask, -1)

  img = img * tf.cast(mask > 0.1, tf.float32)[:, :, None]

  img_resize = tf.image.resize(img, (SIZE, SIZE), method="bicubic", antialias=True)
  img_pad = tf.image.resize_with_pad(img, SIZE, SIZE, method="bicubic", antialias=True)

  # building 2 anchors
  anchors = tf.where(mask > 0.15)
  anchor_xmin = tf.math.reduce_min(anchors[:, 0])
  anchor_xmax = tf.math.reduce_max(anchors[:, 0])
  anchor_ymin = tf.math.reduce_min(anchors[:, 1])
  anchor_ymax = tf.math.reduce_max(anchors[:, 1])

  if anchor_xmax - anchor_xmin > 50 and anchor_ymax - anchor_ymin > 50:

    img_anchor_1 = resize(img[anchor_xmin:anchor_xmax, anchor_ymin:anchor_ymax])

    delta_x = (anchor_xmax - anchor_xmin) // 4
    delta_y = (anchor_ymax - anchor_ymin) // 4
    img_anchor_2 = img[anchor_xmin+delta_x:anchor_xmax-delta_x,
                      anchor_ymin+delta_y:anchor_ymax-delta_y]
    img_anchor_2 = resize(img_anchor_2)
  else:
    img_anchor_1 = img_resize
    img_anchor_2 = img_pad

  # building the anchors max
  anchor_max = tf.where(mask == tf.math.reduce_max(mask))[0]
  anchor_max_x, anchor_max_y = anchor_max[0], anchor_max[1]

  img_max_zoom1 = img[tf.math.maximum(anchor_max_x-SIZE, 0): tf.math.minimum(anchor_max_x+SIZE, w),
                      tf.math.maximum(anchor_max_y-SIZE, 0): tf.math.minimum(anchor_max_y+SIZE, h)]

  img_max_zoom1 = resize(img_max_zoom1)
  img_max_zoom2 = img[anchor_max_x-SIZE//2:anchor_max_x+SIZE//2,
                      anchor_max_y-SIZE//2:anchor_max_y+SIZE//2]
  img_max_zoom2 = img[tf.math.maximum(anchor_max_x-SIZE//2, 0): tf.math.minimum(anchor_max_x+SIZE//2, w),
                      tf.math.maximum(anchor_max_y-SIZE//2, 0): tf.math.minimum(anchor_max_y+SIZE//2, h)]
  #tf.print(img_max_zoom2.shape)
  #img_max_zoom2 = resize(img_max_zoom2)

  return tf.cast(img_resize, tf.float32)

def parse_img(element, split, randaugment,maskaugment=True):
  #global debug
  path, class_id = element[0], element[1]

  data = tf.io.read_file(path)
  img = tf.io.decode_jpeg(data)
  img = tf.cast(img, tf.uint8)
  img = normalize(img)
  shape = tf.shape(img)

  # data_mask = tf.io.read_file(path_mask)
  # mask = tf.io.decode_jpeg(data_mask)

  class_id = tf.strings.to_number(class_id)
  class_id = tf.cast(class_id, tf.int32)

  label = tf.one_hot(class_id, num_classes)

  # img = pi(img, mask)
  img = tf.image.resize_with_pad(img, SIZE, SIZE, method="bicubic", antialias=True)

  return tf.cast(img, tf.float32), tf.cast(label, tf.int32)

SIZE = 384
wsize=hsize=SIZE
def resize_images(batch_x, width=224, height=224):
    return tf.image.resize(batch_x, (width, height))

def load_img(image_path,gray=False):
    img = tf.io.read_file(image_path)
    img = tf.image.decode_jpeg(img, channels=3)
    img = tf.image.convert_image_dtype(img, tf.float32)
    if gray:
        img = tf.image.rgb_to_grayscale(img)
        img = tf.image.grayscale_to_rgb(img)
    img = tf.image.resize(img,(wsize,hsize))
    return img

LR = 1e-3

optimizer = tf.keras.optimizers.Adam(LR)
cce = tf.keras.losses.categorical_crossentropy

model_path = '/content/drive/MyDrive/Gg_Fossils_data_shared_copy/Fossils/models/model-13.h5'
model = keras.models.load_model(model_path, custom_objects = {'cce': cce})

outputs = model.predict(images)

predictions = tf.math.top_k(outputs[1], k = 5)
cid = 1
dataset = np.array(dataset)
final_predictions = []
for ele in predictions[1]:
  if cid in ele:
    final_predictions.append(cid)
  else:
    final_predictions.append(cid+10)
final_predictions = np.array(final_predictions)
images2 = images[final_predictions == cid]
image2_paths = dataset[final_predictions == cid][:,0]
print(images2.shape)

def get_beit_model(input_shape, num_labels, load_weights=False, ...):
    pass

def inference_dino(input_image, model_name):
    pass

def inference_beit_embedding(input_image, model, size=600):
    pass