Spaces:
Sleeping
Sleeping
debugging: xai output distortion
Browse files- app.py +2 -2
- explanations.py +2 -6
app.py
CHANGED
|
@@ -141,7 +141,7 @@ def classify_image(input_image, model_name):
|
|
| 141 |
from inference_resnet import inference_resnet_finer
|
| 142 |
model,n_classes= get_model(model_name)
|
| 143 |
result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
|
| 144 |
-
return result
|
| 145 |
elif 'Mummified 170' ==model_name:
|
| 146 |
from inference_resnet import inference_resnet_finer
|
| 147 |
model, n_classes= get_model(model_name)
|
|
@@ -169,7 +169,7 @@ def get_embeddings(input_image,model_name):
|
|
| 169 |
from inference_resnet import inference_resnet_embedding
|
| 170 |
model,n_classes= get_model(model_name)
|
| 171 |
result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
|
| 172 |
-
return result
|
| 173 |
elif 'Mummified 170' ==model_name:
|
| 174 |
from inference_resnet import inference_resnet_embedding
|
| 175 |
model, n_classes= get_model(model_name)
|
|
|
|
| 141 |
from inference_resnet import inference_resnet_finer
|
| 142 |
model,n_classes= get_model(model_name)
|
| 143 |
result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
|
| 144 |
+
return result
|
| 145 |
elif 'Mummified 170' ==model_name:
|
| 146 |
from inference_resnet import inference_resnet_finer
|
| 147 |
model, n_classes= get_model(model_name)
|
|
|
|
| 169 |
from inference_resnet import inference_resnet_embedding
|
| 170 |
model,n_classes= get_model(model_name)
|
| 171 |
result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
|
| 172 |
+
return result
|
| 173 |
elif 'Mummified 170' ==model_name:
|
| 174 |
from inference_resnet import inference_resnet_embedding
|
| 175 |
model, n_classes= get_model(model_name)
|
explanations.py
CHANGED
|
@@ -29,13 +29,8 @@ def preprocess_image(image, output_size=(300, 300)):
|
|
| 29 |
return image_resized
|
| 30 |
|
| 31 |
def show(img, output_size,p=False, **kwargs):
|
| 32 |
-
img = np.array(img, dtype=np.float32)
|
| 33 |
-
h, w = img.shape[:2]
|
| 34 |
-
print(h,w)
|
| 35 |
|
| 36 |
-
img = preprocess_image(img, output_size=(output_size,output_size))
|
| 37 |
-
h, w = img.shape[:2]
|
| 38 |
-
print(h,w)
|
| 39 |
|
| 40 |
# check if channel first
|
| 41 |
if img.shape[0] == 1:
|
|
@@ -53,6 +48,7 @@ def show(img, output_size,p=False, **kwargs):
|
|
| 53 |
# check if clip percentile
|
| 54 |
if p is not False:
|
| 55 |
img = np.clip(img, np.percentile(img, p), np.percentile(img, 100-p))
|
|
|
|
| 56 |
plt.imshow(img, **kwargs)
|
| 57 |
plt.axis('off')
|
| 58 |
|
|
|
|
| 29 |
return image_resized
|
| 30 |
|
| 31 |
def show(img, output_size,p=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
#img = preprocess_image(img, output_size=(output_size,output_size))
|
|
|
|
|
|
|
| 34 |
|
| 35 |
# check if channel first
|
| 36 |
if img.shape[0] == 1:
|
|
|
|
| 48 |
# check if clip percentile
|
| 49 |
if p is not False:
|
| 50 |
img = np.clip(img, np.percentile(img, p), np.percentile(img, 100-p))
|
| 51 |
+
img = preprocess_image(img, output_size=(output_size,output_size))
|
| 52 |
plt.imshow(img, **kwargs)
|
| 53 |
plt.axis('off')
|
| 54 |
|