import gradio as gr import numpy as np gr.Interface.load("models/openai-gpt") def predict(sentence1, sentence2): sentence_pairs = np.array([[str(sentence1), str(sentence2)]]) test_data = BertSemanticDataGenerator( sentence_pairs, labels=None, batch_size=1, shuffle=False, include_targets=False, ) probs = model.predict(test_data[0])[0] labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)} return labels_probs examples = [["Two women are observing something together.", "Two women are standing with their eyes closed."], ["A smiling costumed woman is holding an umbrella", "A happy woman in a fairy costume holds an umbrella"], ["A soccer game with multiple males playing", "Some men are playing a sport"], ] gr.Interface( fn=predict, title="basic with GPT", description = "Natural Language Inference by fine-tuning GPT model", inputs=["text", "text"], examples=examples, #outputs=gr.Textbox(label='Prediction'), outputs=gr.outputs.Label(num_top_classes=3, label='Semantic similarity'), cache_examples=True ).launch(debug=True, enable_queue=True) # gr.Interface.load("models/openai-gpt").launch()