| from core.model_runtime.entities.model_entities import DefaultParameterName | |
| PARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = { | |
| DefaultParameterName.TEMPERATURE: { | |
| "label": { | |
| "en_US": "Temperature", | |
| "zh_Hans": "温度", | |
| }, | |
| "type": "float", | |
| "help": { | |
| "en_US": "Controls randomness. Lower temperature results in less random completions." | |
| " As the temperature approaches zero, the model will become deterministic and repetitive." | |
| " Higher temperature results in more random completions.", | |
| "zh_Hans": "温度控制随机性。较低的温度会导致较少的随机完成。随着温度接近零,模型将变得确定性和重复性。" | |
| "较高的温度会导致更多的随机完成。", | |
| }, | |
| "required": False, | |
| "default": 0.0, | |
| "min": 0.0, | |
| "max": 1.0, | |
| "precision": 2, | |
| }, | |
| DefaultParameterName.TOP_P: { | |
| "label": { | |
| "en_US": "Top P", | |
| "zh_Hans": "Top P", | |
| }, | |
| "type": "float", | |
| "help": { | |
| "en_US": "Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options" | |
| " are considered.", | |
| "zh_Hans": "通过核心采样控制多样性:0.5表示考虑了一半的所有可能性加权选项。", | |
| }, | |
| "required": False, | |
| "default": 1.0, | |
| "min": 0.0, | |
| "max": 1.0, | |
| "precision": 2, | |
| }, | |
| DefaultParameterName.TOP_K: { | |
| "label": { | |
| "en_US": "Top K", | |
| "zh_Hans": "Top K", | |
| }, | |
| "type": "int", | |
| "help": { | |
| "en_US": "Limits the number of tokens to consider for each step by keeping only the k most likely tokens.", | |
| "zh_Hans": "通过只保留每一步中最可能的 k 个标记来限制要考虑的标记数量。", | |
| }, | |
| "required": False, | |
| "default": 50, | |
| "min": 1, | |
| "max": 100, | |
| "precision": 0, | |
| }, | |
| DefaultParameterName.PRESENCE_PENALTY: { | |
| "label": { | |
| "en_US": "Presence Penalty", | |
| "zh_Hans": "存在惩罚", | |
| }, | |
| "type": "float", | |
| "help": { | |
| "en_US": "Applies a penalty to the log-probability of tokens already in the text.", | |
| "zh_Hans": "对文本中已有的标记的对数概率施加惩罚。", | |
| }, | |
| "required": False, | |
| "default": 0.0, | |
| "min": 0.0, | |
| "max": 1.0, | |
| "precision": 2, | |
| }, | |
| DefaultParameterName.FREQUENCY_PENALTY: { | |
| "label": { | |
| "en_US": "Frequency Penalty", | |
| "zh_Hans": "频率惩罚", | |
| }, | |
| "type": "float", | |
| "help": { | |
| "en_US": "Applies a penalty to the log-probability of tokens that appear in the text.", | |
| "zh_Hans": "对文本中出现的标记的对数概率施加惩罚。", | |
| }, | |
| "required": False, | |
| "default": 0.0, | |
| "min": 0.0, | |
| "max": 1.0, | |
| "precision": 2, | |
| }, | |
| DefaultParameterName.MAX_TOKENS: { | |
| "label": { | |
| "en_US": "Max Tokens", | |
| "zh_Hans": "最大标记", | |
| }, | |
| "type": "int", | |
| "help": { | |
| "en_US": "Specifies the upper limit on the length of generated results." | |
| " If the generated results are truncated, you can increase this parameter.", | |
| "zh_Hans": "指定生成结果长度的上限。如果生成结果截断,可以调大该参数。", | |
| }, | |
| "required": False, | |
| "default": 64, | |
| "min": 1, | |
| "max": 2048, | |
| "precision": 0, | |
| }, | |
| DefaultParameterName.RESPONSE_FORMAT: { | |
| "label": { | |
| "en_US": "Response Format", | |
| "zh_Hans": "回复格式", | |
| }, | |
| "type": "string", | |
| "help": { | |
| "en_US": "Set a response format, ensure the output from llm is a valid code block as possible," | |
| " such as JSON, XML, etc.", | |
| "zh_Hans": "设置一个返回格式,确保llm的输出尽可能是有效的代码块,如JSON、XML等", | |
| }, | |
| "required": False, | |
| "options": ["JSON", "XML"], | |
| }, | |
| DefaultParameterName.JSON_SCHEMA: { | |
| "label": { | |
| "en_US": "JSON Schema", | |
| }, | |
| "type": "text", | |
| "help": { | |
| "en_US": "Set a response json schema will ensure LLM to adhere it.", | |
| "zh_Hans": "设置返回的json schema,llm将按照它返回", | |
| }, | |
| "required": False, | |
| }, | |
| } | |