Spaces:
Sleeping
Sleeping
Rename app.py to application.py
Browse files- app.py → application.py +101 -101
app.py → application.py
RENAMED
@@ -1,101 +1,101 @@
|
|
1 |
-
import os
|
2 |
-
from flask import Flask, request, jsonify, render_template, send_from_directory
|
3 |
-
from huggingface_hub import InferenceClient
|
4 |
-
from datasets import load_dataset
|
5 |
-
import markdown2
|
6 |
-
import signal
|
7 |
-
|
8 |
-
os.environ["HF_HOME"] = "/app/.cache"
|
9 |
-
|
10 |
-
application = Flask(__name__, static_folder='static', template_folder='templates')
|
11 |
-
|
12 |
-
hf_token = os.getenv("HF_TOKEN")
|
13 |
-
|
14 |
-
chat_doctor_dataset = load_dataset("avaliev/chat_doctor")
|
15 |
-
mental_health_dataset = load_dataset("Amod/mental_health_counseling_conversations")
|
16 |
-
|
17 |
-
client = InferenceClient(
|
18 |
-
"meta-llama/Meta-Llama-3-8B-Instruct",
|
19 |
-
token=hf_token,
|
20 |
-
)
|
21 |
-
|
22 |
-
def select_relevant_context(user_input):
|
23 |
-
mental_health_keywords = [
|
24 |
-
"anxious", "depressed", "stress", "mental health", "counseling",
|
25 |
-
"therapy", "feelings", "worthless", "suicidal", "panic", "anxiety"
|
26 |
-
]
|
27 |
-
medical_keywords = [
|
28 |
-
"symptoms", "diagnosis", "treatment", "doctor", "prescription", "medication",
|
29 |
-
"pain", "illness", "disease", "infection", "surgery"
|
30 |
-
]
|
31 |
-
|
32 |
-
# Check if the input contains any mental health-related keywords
|
33 |
-
if any(keyword in user_input.lower() for keyword in mental_health_keywords):
|
34 |
-
example = mental_health_dataset['train'][0]
|
35 |
-
context = f"Counselor: {example['Response']}\nUser: {example['Context']}"
|
36 |
-
# Check if the input contains any medical-related keywords
|
37 |
-
elif any(keyword in user_input.lower() for keyword in medical_keywords):
|
38 |
-
example = chat_doctor_dataset['train'][0]
|
39 |
-
context = f"Doctor: {example['input']}\nPatient: {example['output']}"
|
40 |
-
else:
|
41 |
-
# If no specific keywords are found, provide a general response
|
42 |
-
context = "You are a general assistant. Respond to the user's query in a helpful manner."
|
43 |
-
|
44 |
-
return context
|
45 |
-
|
46 |
-
def create_prompt(context, user_input):
|
47 |
-
prompt = (
|
48 |
-
f"{context}\n\n"
|
49 |
-
f"User: {user_input}\nAssistant:"
|
50 |
-
)
|
51 |
-
return prompt
|
52 |
-
|
53 |
-
# Function to render Markdown into HTML
|
54 |
-
def render_markdown(text):
|
55 |
-
return markdown2.markdown(text)
|
56 |
-
|
57 |
-
@application.route('/')
|
58 |
-
def index():
|
59 |
-
return render_template('index.html')
|
60 |
-
|
61 |
-
@application.route('/static/<path:path>')
|
62 |
-
def send_static(path):
|
63 |
-
return send_from_directory('static', path)
|
64 |
-
|
65 |
-
@application.route('/chat', methods=['POST'])
|
66 |
-
def chat():
|
67 |
-
user_input = request.json['message']
|
68 |
-
|
69 |
-
context = select_relevant_context(user_input)
|
70 |
-
|
71 |
-
prompt = create_prompt(context, user_input)
|
72 |
-
|
73 |
-
response = ""
|
74 |
-
for message in client.chat_completion(
|
75 |
-
messages=[{"role": "user", "content": prompt}],
|
76 |
-
max_tokens=500,
|
77 |
-
stream=True,
|
78 |
-
):
|
79 |
-
response += message.choices[0].delta.content
|
80 |
-
|
81 |
-
formatted_response = render_markdown(response)
|
82 |
-
|
83 |
-
return jsonify({"response": formatted_response})
|
84 |
-
|
85 |
-
@application.route('/shutdown', methods=['POST'])
|
86 |
-
def shutdown():
|
87 |
-
if request.environ.get('werkzeug.server.shutdown'):
|
88 |
-
shutdown_server()
|
89 |
-
else:
|
90 |
-
os.kill(os.getpid(), signal.SIGINT)
|
91 |
-
return jsonify({"message": "Server is shutting down..."})
|
92 |
-
|
93 |
-
def shutdown_server():
|
94 |
-
func = request.environ.get('werkzeug.server.shutdown')
|
95 |
-
if func is None:
|
96 |
-
os.kill(os.getpid(), signal.SIGINT) # Kill the process if Werkzeug is not available
|
97 |
-
else:
|
98 |
-
func()
|
99 |
-
|
100 |
-
if __name__ == '__main__':
|
101 |
-
application.run(host='0.0.0.0', port=
|
|
|
1 |
+
import os
|
2 |
+
from flask import Flask, request, jsonify, render_template, send_from_directory
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
from datasets import load_dataset
|
5 |
+
import markdown2
|
6 |
+
import signal
|
7 |
+
|
8 |
+
os.environ["HF_HOME"] = "/app/.cache"
|
9 |
+
|
10 |
+
application = Flask(__name__, static_folder='static', template_folder='templates')
|
11 |
+
|
12 |
+
hf_token = os.getenv("HF_TOKEN")
|
13 |
+
|
14 |
+
chat_doctor_dataset = load_dataset("avaliev/chat_doctor")
|
15 |
+
mental_health_dataset = load_dataset("Amod/mental_health_counseling_conversations")
|
16 |
+
|
17 |
+
client = InferenceClient(
|
18 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
19 |
+
token=hf_token,
|
20 |
+
)
|
21 |
+
|
22 |
+
def select_relevant_context(user_input):
|
23 |
+
mental_health_keywords = [
|
24 |
+
"anxious", "depressed", "stress", "mental health", "counseling",
|
25 |
+
"therapy", "feelings", "worthless", "suicidal", "panic", "anxiety"
|
26 |
+
]
|
27 |
+
medical_keywords = [
|
28 |
+
"symptoms", "diagnosis", "treatment", "doctor", "prescription", "medication",
|
29 |
+
"pain", "illness", "disease", "infection", "surgery"
|
30 |
+
]
|
31 |
+
|
32 |
+
# Check if the input contains any mental health-related keywords
|
33 |
+
if any(keyword in user_input.lower() for keyword in mental_health_keywords):
|
34 |
+
example = mental_health_dataset['train'][0]
|
35 |
+
context = f"Counselor: {example['Response']}\nUser: {example['Context']}"
|
36 |
+
# Check if the input contains any medical-related keywords
|
37 |
+
elif any(keyword in user_input.lower() for keyword in medical_keywords):
|
38 |
+
example = chat_doctor_dataset['train'][0]
|
39 |
+
context = f"Doctor: {example['input']}\nPatient: {example['output']}"
|
40 |
+
else:
|
41 |
+
# If no specific keywords are found, provide a general response
|
42 |
+
context = "You are a general assistant. Respond to the user's query in a helpful manner."
|
43 |
+
|
44 |
+
return context
|
45 |
+
|
46 |
+
def create_prompt(context, user_input):
|
47 |
+
prompt = (
|
48 |
+
f"{context}\n\n"
|
49 |
+
f"User: {user_input}\nAssistant:"
|
50 |
+
)
|
51 |
+
return prompt
|
52 |
+
|
53 |
+
# Function to render Markdown into HTML
|
54 |
+
def render_markdown(text):
|
55 |
+
return markdown2.markdown(text)
|
56 |
+
|
57 |
+
@application.route('/')
|
58 |
+
def index():
|
59 |
+
return render_template('index.html')
|
60 |
+
|
61 |
+
@application.route('/static/<path:path>')
|
62 |
+
def send_static(path):
|
63 |
+
return send_from_directory('static', path)
|
64 |
+
|
65 |
+
@application.route('/chat', methods=['POST'])
|
66 |
+
def chat():
|
67 |
+
user_input = request.json['message']
|
68 |
+
|
69 |
+
context = select_relevant_context(user_input)
|
70 |
+
|
71 |
+
prompt = create_prompt(context, user_input)
|
72 |
+
|
73 |
+
response = ""
|
74 |
+
for message in client.chat_completion(
|
75 |
+
messages=[{"role": "user", "content": prompt}],
|
76 |
+
max_tokens=500,
|
77 |
+
stream=True,
|
78 |
+
):
|
79 |
+
response += message.choices[0].delta.content
|
80 |
+
|
81 |
+
formatted_response = render_markdown(response)
|
82 |
+
|
83 |
+
return jsonify({"response": formatted_response})
|
84 |
+
|
85 |
+
@application.route('/shutdown', methods=['POST'])
|
86 |
+
def shutdown():
|
87 |
+
if request.environ.get('werkzeug.server.shutdown'):
|
88 |
+
shutdown_server()
|
89 |
+
else:
|
90 |
+
os.kill(os.getpid(), signal.SIGINT)
|
91 |
+
return jsonify({"message": "Server is shutting down..."})
|
92 |
+
|
93 |
+
def shutdown_server():
|
94 |
+
func = request.environ.get('werkzeug.server.shutdown')
|
95 |
+
if func is None:
|
96 |
+
os.kill(os.getpid(), signal.SIGINT) # Kill the process if Werkzeug is not available
|
97 |
+
else:
|
98 |
+
func()
|
99 |
+
|
100 |
+
if __name__ == '__main__':
|
101 |
+
application.run(host='0.0.0.0', port=7680)
|