Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,37 @@
|
|
1 |
import os
|
2 |
-
from
|
|
|
|
|
|
|
3 |
from huggingface_hub import InferenceClient
|
4 |
from datasets import load_dataset
|
5 |
import markdown2
|
6 |
|
|
|
7 |
os.environ["HF_HOME"] = "/app/.cache"
|
8 |
|
9 |
-
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
hf_token = os.getenv("HF_TOKEN")
|
12 |
|
|
|
13 |
chat_doctor_dataset = load_dataset("avaliev/chat_doctor")
|
14 |
mental_health_dataset = load_dataset("Amod/mental_health_counseling_conversations")
|
15 |
|
|
|
16 |
client = InferenceClient(
|
17 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
18 |
token=hf_token,
|
19 |
)
|
20 |
|
21 |
-
def select_relevant_context(user_input):
|
|
|
22 |
mental_health_keywords = [
|
23 |
"anxious", "depressed", "stress", "mental health", "counseling",
|
24 |
"therapy", "feelings", "worthless", "suicidal", "panic", "anxiety"
|
@@ -36,44 +49,44 @@ def select_relevant_context(user_input):
|
|
36 |
context = f"Doctor: {example['input']}\nPatient: {example['output']}"
|
37 |
else:
|
38 |
context = "You are a general assistant. Respond to the user's query in a helpful manner."
|
39 |
-
|
40 |
return context
|
41 |
|
42 |
-
def create_prompt(context, user_input):
|
43 |
-
prompt
|
44 |
-
|
45 |
-
f"User: {user_input}\nAssistant:"
|
46 |
-
)
|
47 |
-
return prompt
|
48 |
|
49 |
-
def render_markdown(text):
|
|
|
50 |
return markdown2.markdown(text)
|
51 |
|
52 |
-
@app.
|
53 |
-
def index():
|
54 |
-
|
|
|
55 |
|
56 |
-
@app.
|
57 |
-
def
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
formatted_response = render_markdown(response)
|
75 |
|
76 |
-
|
|
|
77 |
|
78 |
-
if __name__ == '__main__':
|
79 |
-
app.run(debug=False)
|
|
|
1 |
import os
|
2 |
+
from fastapi import FastAPI, Request, HTTPException
|
3 |
+
from fastapi.responses import JSONResponse, HTMLResponse
|
4 |
+
from fastapi.staticfiles import StaticFiles
|
5 |
+
from fastapi.templating import Jinja2Templates
|
6 |
from huggingface_hub import InferenceClient
|
7 |
from datasets import load_dataset
|
8 |
import markdown2
|
9 |
|
10 |
+
# Set up Hugging Face cache
|
11 |
os.environ["HF_HOME"] = "/app/.cache"
|
12 |
|
13 |
+
# Initialize FastAPI application
|
14 |
+
app = FastAPI()
|
15 |
|
16 |
+
# Set up templates and static file serving
|
17 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
18 |
+
templates = Jinja2Templates(directory="templates")
|
19 |
+
|
20 |
+
# Hugging Face API token
|
21 |
hf_token = os.getenv("HF_TOKEN")
|
22 |
|
23 |
+
# Load datasets
|
24 |
chat_doctor_dataset = load_dataset("avaliev/chat_doctor")
|
25 |
mental_health_dataset = load_dataset("Amod/mental_health_counseling_conversations")
|
26 |
|
27 |
+
# Set up Hugging Face Inference Client
|
28 |
client = InferenceClient(
|
29 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
30 |
token=hf_token,
|
31 |
)
|
32 |
|
33 |
+
def select_relevant_context(user_input: str) -> str:
|
34 |
+
"""Select relevant context from the datasets based on user input keywords."""
|
35 |
mental_health_keywords = [
|
36 |
"anxious", "depressed", "stress", "mental health", "counseling",
|
37 |
"therapy", "feelings", "worthless", "suicidal", "panic", "anxiety"
|
|
|
49 |
context = f"Doctor: {example['input']}\nPatient: {example['output']}"
|
50 |
else:
|
51 |
context = "You are a general assistant. Respond to the user's query in a helpful manner."
|
52 |
+
|
53 |
return context
|
54 |
|
55 |
+
def create_prompt(context: str, user_input: str) -> str:
|
56 |
+
"""Create the final prompt based on the context and user input."""
|
57 |
+
return f"{context}\n\nUser: {user_input}\nAssistant:"
|
|
|
|
|
|
|
58 |
|
59 |
+
def render_markdown(text: str) -> str:
|
60 |
+
"""Render Markdown into HTML."""
|
61 |
return markdown2.markdown(text)
|
62 |
|
63 |
+
@app.get("/", response_class=HTMLResponse)
|
64 |
+
async def index(request: Request):
|
65 |
+
"""Render the homepage."""
|
66 |
+
return templates.TemplateResponse("index.html", {"request": request})
|
67 |
|
68 |
+
@app.post("/chat")
|
69 |
+
async def chat(request: Request):
|
70 |
+
"""Handle the chat route and process user input."""
|
71 |
+
try:
|
72 |
+
data = await request.json()
|
73 |
+
user_input = data["message"]
|
74 |
|
75 |
+
context = select_relevant_context(user_input)
|
76 |
+
prompt = create_prompt(context, user_input)
|
77 |
+
|
78 |
+
response = ""
|
79 |
+
for message in client.chat_completion(
|
80 |
+
messages=[{"role": "user", "content": prompt}],
|
81 |
+
max_tokens=500,
|
82 |
+
stream=True,
|
83 |
+
):
|
84 |
+
response += message.choices[0].delta.content
|
85 |
+
|
86 |
+
formatted_response = render_markdown(response)
|
87 |
+
|
88 |
+
return JSONResponse({"response": formatted_response})
|
|
|
89 |
|
90 |
+
except Exception as e:
|
91 |
+
raise HTTPException(status_code=500, detail=f"Error processing chat: {str(e)}")
|
92 |
|
|
|
|