File size: 14,386 Bytes
d8d92d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import argparse
import time
from pathlib import Path
import streamlit as st
import cv2
import torch
import torch.backends.cudnn as cudnn
import os
import sys
import datetime
import matplotlib.pyplot as plt
import seaborn as sns
sys.path.insert(0, './yolov5') # Path for internal module without changing base
import numpy as np
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from yolov5.utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from yolov5.utils.general import set_logging
from yolov5.utils.plots import Annotator, colors, save_one_box, plot_one_box
from yolov5.utils.torch_utils import select_device, time_sync
from deep_sort_pytorch.utils.parser import get_config
from deep_sort_pytorch.deep_sort import DeepSort
from graphs import bbox_rel,draw_boxes
from collections import Counter
import psutil
import subprocess
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
def get_gpu_memory():
result = subprocess.check_output(
[
'nvidia-smi', '--query-gpu=memory.used',
'--format=csv,nounits,noheader'
], encoding='utf-8')
gpu_memory = [int(x) for x in result.strip().split('\n')]
return gpu_memory[0]
@torch.no_grad()
def detect(weights=ROOT / 'yolov5s.pt', # model.pt path(s)
source=ROOT / 'yolov5/data/images', # file/dir/URL/glob, 0 for webcam
data=ROOT / 'yolov5/data/coco128.yaml', # dataset.yaml path
stframe=None,
#stgraph=None,
kpi1_text="",
kpi2_text="", kpi3_text="",
js1_text="",js2_text="",js3_text="",
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=1, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False,
display_labels=False,
config_deepsort="deep_sort_pytorch/configs/deep_sort.yaml", #Deep Sort configuration
conf_thres_drift = 0.75,
save_poor_frame__ = False,
inf_ov_1_text="", inf_ov_2_text="",inf_ov_3_text="", inf_ov_4_text="",
fps_warn="",fps_drop_warn_thresh=8
):
save_img = not nosave and not source.endswith('.txt') # save inference images
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))
## initialize deepsort
cfg = get_config()
cfg.merge_from_file(config_deepsort)
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
use_cuda=True)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
if save_poor_frame__:
try:
os.mkdir("drift_frames")
except:
print("Folder exists, overwriting...")
# Initialize
set_logging()
device = select_device(device)
half &= device.type != 'cpu' # half precision only supported on CUDA
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
imgsz = check_img_size(imgsz, s=stride) # check image size
# Half
half &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16 supported on limited backends with CUDA
if pt or jit:
model.model.half() if half else model.model.float()
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Dataloader
if webcam:
#view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
t0 = time.time()
dt, seen = [0.0, 0.0, 0.0], 0
prev_time = time.time()
selected_names = names.copy()
global_graph_dict = dict()
global_drift_dict = dict()
test_drift = []
frame_num = -1
poor_perf_frame_counter=0
mapped_ = dict()
min_FPS = 10000
max_FPS = -1
for path, im, im0s, vid_cap, s in dataset:
frame_num = frame_num+1
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
dt[2] += time_sync() - t3
# Process predictions
class_count = 0
drift_dict = dict()
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
names_ = []
cnt = []
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
names_.append(names[int(c)])
cnt.append(int(n.detach().cpu().numpy()))
mapped_.update(dict(zip(names_, cnt)))
global_graph_dict = Counter(global_graph_dict) + Counter(mapped_)
bbox_xywh = []
confs = []
# Adapt detections to deep sort input format
for *xyxy, conf, cls in det:
x_c, y_c, bbox_w, bbox_h = bbox_rel(*xyxy)
obj = [x_c, y_c, bbox_w, bbox_h]
bbox_xywh.append(obj)
confs.append([conf.item()])
# print("conf : {0}, conf_t : {1}".format(conf, conf_thres))
if conf<conf_thres_drift:
if names[int(cls)] not in test_drift:
test_drift.append(names[int(cls)])
if save_poor_frame__:
cv2.imwrite("drift_frames/frame_{0}.png".format(frame_num), im0)
poor_perf_frame_counter+=1
# print(type(conf_thres))
xywhs = torch.Tensor(bbox_xywh)
confss = torch.Tensor(confs)
# Pass detections to deepsort
outputs = deepsort.update(xywhs, confss, im0)
# draw boxes for visualization
if len(outputs) > 0:
# print("Outputs :", outputs)
bbox_xyxy = outputs[:, :4]
identities = outputs[:, -1]
draw_boxes(im0, bbox_xyxy, identities)
# Write MOT compliant results to file
if save_txt and len(outputs) != 0:
for j, output in enumerate(outputs):
bbox_left = output[0]
bbox_top = output[1]
bbox_w = output[2]
bbox_h = output[3]
identity = output[-1]
with open(txt_path, 'a') as f:
f.write(('%g ' * 10 + '\n') % (frame_idx, identity, bbox_left,
bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) # label format
# Write results Label
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or save_crop or view_img or display_labels: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness)
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
else:
deepsort.increment_ages()
# Stream results
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
curr_time = time.time()
fps_ = curr_time - prev_time
fps_ = round(1/round(fps_, 3),1)
prev_time = curr_time
js1_text.write(str(psutil.virtual_memory()[2])+"%")
js2_text.write(str(psutil.cpu_percent())+'%')
try:
js3_text.write(str(get_gpu_memory())+' MB')
except:
js3_text.write(str('NA'))
kpi1_text.write(str(fps_)+' FPS')
if fps_ < fps_drop_warn_thresh:
fps_warn.warning(f"FPS dropped below {fps_drop_warn_thresh}")
kpi2_text.write(mapped_)
kpi3_text.write(global_graph_dict)
inf_ov_1_text.write(test_drift)
inf_ov_2_text.write(poor_perf_frame_counter)
if fps_<min_FPS:
inf_ov_3_text.write(fps_)
min_FPS = fps_
if fps_>max_FPS:
inf_ov_4_text.write(fps_)
max_FPS = fps_
stframe.image(im0, channels="BGR", use_column_width=True)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
if update:
strip_optimizer(weights) # update model (to fix SourceChangeWarning)
if vid_cap:
vid_cap.release()
|