File size: 9,962 Bytes
80585bc 7fa4ec7 80585bc 7fa4ec7 18cc344 fd94e5f 7fa4ec7 18cc344 80585bc aabfb0a 80585bc 18cc344 7fa4ec7 fd94e5f 7fa4ec7 fd94e5f aabfb0a 7fa4ec7 aabfb0a 7fa4ec7 aabfb0a 7fa4ec7 7406e96 7fa4ec7 7406e96 7fa4ec7 fd94e5f f26cc53 7fa4ec7 aabfb0a 7fa4ec7 aabfb0a ed38ea6 18cc344 aabfb0a 18cc344 7fa4ec7 18cc344 7fa4ec7 18cc344 7fa4ec7 18cc344 7fa4ec7 18cc344 fd94e5f 18cc344 7406e96 18cc344 fd94e5f 18cc344 fd94e5f 80585bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import streamlit as st
import torch
from PIL import Image
import numpy as np
from transformers import ViTForImageClassification, ViTImageProcessor
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
import logging
import faiss
from typing import List, Dict
from datetime import datetime
from groq import Groq
import os
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class RAGSystem:
def __init__(self):
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
self.knowledge_base = self.load_knowledge_base()
self.vector_store = self.create_vector_store()
self.query_history = []
def load_knowledge_base(self) -> List[Dict]:
"""Load and preprocess knowledge base"""
kb = {
"spalling": [
{
"severity": "Critical",
"description": "Severe concrete spalling with exposed reinforcement",
"repair_method": "Remove deteriorated concrete, clean reinforcement",
"estimated_cost": "Very High ($15,000+)",
"immediate_action": "Evacuate area, install support",
"prevention": "Regular inspections, waterproofing"
}
],
"structural_cracks": [
{
"severity": "High",
"description": "Active structural cracks >5mm width",
"repair_method": "Structural analysis, epoxy injection",
"estimated_cost": "High ($10,000-$20,000)",
"immediate_action": "Install crack monitors",
"prevention": "Regular monitoring, load management"
}
],
"surface_deterioration": [
{
"severity": "Medium",
"description": "Surface scaling and deterioration",
"repair_method": "Surface preparation, patch repair",
"estimated_cost": "Medium ($5,000-$10,000)",
"immediate_action": "Document extent, plan repairs",
"prevention": "Surface sealers, proper drainage"
}
]
}
documents = []
for category, items in kb.items():
for item in items:
doc_text = f"Category: {category}\n"
for key, value in item.items():
doc_text += f"{key}: {value}\n"
documents.append({"text": doc_text, "metadata": {"category": category}})
return documents
def create_vector_store(self):
"""Create FAISS vector store"""
texts = [doc["text"] for doc in self.knowledge_base]
embeddings = self.embedding_model.encode(texts)
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings).astype('float32'))
return index
def get_relevant_context(self, query: str, k: int = 2) -> str:
"""Retrieve relevant context based on query"""
try:
query_embedding = self.embedding_model.encode([query])
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]])
self.query_history.append({
"timestamp": datetime.now().isoformat(),
"query": query
})
return context
except Exception as e:
logger.error(f"Error retrieving context: {e}")
return ""
class ImageAnalyzer:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
try:
self.model = ViTForImageClassification.from_pretrained(
"google/vit-base-patch16-224",
num_labels=len(self.defect_classes)
).to(self.device)
self.processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
except Exception as e:
logger.error(f"Model initialization error: {e}")
self.model = None
self.processor = None
def analyze_image(self, image):
try:
# Ensure image is RGB
if image.mode != 'RGB':
image = image.convert('RGB')
# Process image
inputs = self.processor(images=image, return_tensors="pt")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Get predictions
with torch.no_grad():
outputs = self.model(**inputs)
# Get probabilities
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
return {self.defect_classes[i]: float(probs[i]) for i in range(len(self.defect_classes))}
except Exception as e:
logger.error(f"Analysis error: {e}")
return None
def get_groq_response(query: str, context: str) -> str:
"""Get response from Groq LLM"""
try:
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
prompt = f"""Based on the following context about construction defects, answer the question.
Context: {context}
Question: {query}
Provide a detailed answer based on the given context."""
response = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a construction defect analysis expert."
},
{
"role": "user",
"content": prompt
}
],
model="llama2-70b-4096",
temperature=0.7,
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Groq API error: {e}")
return f"Error: Unable to get response from AI model. Please check your API key and try again."
def main():
st.set_page_config(
page_title="Construction Defect Analyzer",
page_icon="🏗️",
layout="wide"
)
st.title("🏗️ Construction Defect Analyzer")
# Initialize systems
if 'analyzer' not in st.session_state:
st.session_state.analyzer = ImageAnalyzer()
if 'rag_system' not in st.session_state:
st.session_state.rag_system = RAGSystem()
# Create two columns
col1, col2 = st.columns([1, 1])
with col1:
st.subheader("Image Analysis")
uploaded_file = st.file_uploader("Upload a construction image for analysis", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
try:
# Read and display image
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
# Analyze image
with st.spinner('Analyzing image...'):
results = st.session_state.analyzer.analyze_image(image)
if results:
st.success('Analysis complete!')
# Display results
st.subheader("Detected Defects")
# Create bar chart
fig, ax = plt.subplots(figsize=(8, 4))
defects = list(results.keys())
probs = list(results.values())
ax.barh(defects, probs)
ax.set_xlim(0, 1)
plt.tight_layout()
st.pyplot(fig)
# Get most likely defect
most_likely_defect = max(results.items(), key=lambda x: x[1])[0]
st.info(f"Most likely defect: {most_likely_defect}")
else:
st.error("Analysis failed. Please try again.")
except Exception as e:
st.error(f"Error: {str(e)}")
logger.error(f"Process error: {e}")
with col2:
st.subheader("Ask About Defects")
user_query = st.text_input(
"Ask a question about the defects or repairs:",
help="Example: What are the repair methods for spalling?"
)
if user_query:
with st.spinner('Getting answer...'):
# Get context from RAG system
context = st.session_state.rag_system.get_relevant_context(user_query)
# Get response from Groq
response = get_groq_response(user_query, context)
# Display response
st.write("Answer:")
st.write(response)
# Option to view context
with st.expander("View retrieved information"):
st.text(context)
# Sidebar for information
with st.sidebar:
st.header("About")
st.write("""
This tool helps analyze construction defects in images and provides
information about repair methods and best practices.
Features:
- Image analysis for defect detection
- Information lookup for repair methods
- Expert AI responses to your questions
""")
# Display API status
if os.getenv("GROQ_API_KEY"):
st.success("Groq API: Connected")
else:
st.error("Groq API: Not configured")
if __name__ == "__main__":
main() |