File size: 9,962 Bytes
80585bc
 
7fa4ec7
80585bc
7fa4ec7
18cc344
fd94e5f
7fa4ec7
18cc344
 
 
 
 
80585bc
aabfb0a
 
 
80585bc
18cc344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa4ec7
fd94e5f
7fa4ec7
 
fd94e5f
aabfb0a
7fa4ec7
 
 
 
 
aabfb0a
7fa4ec7
 
 
aabfb0a
7fa4ec7
7406e96
 
 
 
 
7fa4ec7
7406e96
7fa4ec7
 
 
fd94e5f
 
f26cc53
7fa4ec7
 
 
aabfb0a
 
7fa4ec7
aabfb0a
ed38ea6
18cc344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aabfb0a
18cc344
 
 
 
 
 
 
7fa4ec7
18cc344
7fa4ec7
 
18cc344
 
7fa4ec7
18cc344
 
 
 
 
 
7fa4ec7
18cc344
 
 
 
 
fd94e5f
18cc344
 
 
7406e96
18cc344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd94e5f
18cc344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd94e5f
80585bc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import streamlit as st
import torch
from PIL import Image
import numpy as np
from transformers import ViTForImageClassification, ViTImageProcessor
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
import logging
import faiss
from typing import List, Dict
from datetime import datetime
from groq import Groq
import os

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class RAGSystem:
    def __init__(self):
        self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
        self.knowledge_base = self.load_knowledge_base()
        self.vector_store = self.create_vector_store()
        self.query_history = []

    def load_knowledge_base(self) -> List[Dict]:
        """Load and preprocess knowledge base"""
        kb = {
            "spalling": [
                {
                    "severity": "Critical",
                    "description": "Severe concrete spalling with exposed reinforcement",
                    "repair_method": "Remove deteriorated concrete, clean reinforcement",
                    "estimated_cost": "Very High ($15,000+)",
                    "immediate_action": "Evacuate area, install support",
                    "prevention": "Regular inspections, waterproofing"
                }
            ],
            "structural_cracks": [
                {
                    "severity": "High",
                    "description": "Active structural cracks >5mm width",
                    "repair_method": "Structural analysis, epoxy injection",
                    "estimated_cost": "High ($10,000-$20,000)",
                    "immediate_action": "Install crack monitors",
                    "prevention": "Regular monitoring, load management"
                }
            ],
            "surface_deterioration": [
                {
                    "severity": "Medium",
                    "description": "Surface scaling and deterioration",
                    "repair_method": "Surface preparation, patch repair",
                    "estimated_cost": "Medium ($5,000-$10,000)",
                    "immediate_action": "Document extent, plan repairs",
                    "prevention": "Surface sealers, proper drainage"
                }
            ]
        }
        
        documents = []
        for category, items in kb.items():
            for item in items:
                doc_text = f"Category: {category}\n"
                for key, value in item.items():
                    doc_text += f"{key}: {value}\n"
                documents.append({"text": doc_text, "metadata": {"category": category}})
        
        return documents

    def create_vector_store(self):
        """Create FAISS vector store"""
        texts = [doc["text"] for doc in self.knowledge_base]
        embeddings = self.embedding_model.encode(texts)
        dimension = embeddings.shape[1]
        index = faiss.IndexFlatL2(dimension)
        index.add(np.array(embeddings).astype('float32'))
        return index

    def get_relevant_context(self, query: str, k: int = 2) -> str:
        """Retrieve relevant context based on query"""
        try:
            query_embedding = self.embedding_model.encode([query])
            D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
            context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]])
            
            self.query_history.append({
                "timestamp": datetime.now().isoformat(),
                "query": query
            })
            
            return context
        except Exception as e:
            logger.error(f"Error retrieving context: {e}")
            return ""

class ImageAnalyzer:
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
        
        try:
            self.model = ViTForImageClassification.from_pretrained(
                "google/vit-base-patch16-224",
                num_labels=len(self.defect_classes)
            ).to(self.device)
            self.processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
        except Exception as e:
            logger.error(f"Model initialization error: {e}")
            self.model = None
            self.processor = None

    def analyze_image(self, image):
        try:
            # Ensure image is RGB
            if image.mode != 'RGB':
                image = image.convert('RGB')
            
            # Process image
            inputs = self.processor(images=image, return_tensors="pt")
            inputs = {k: v.to(self.device) for k, v in inputs.items()}
            
            # Get predictions
            with torch.no_grad():
                outputs = self.model(**inputs)
            
            # Get probabilities
            probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
            return {self.defect_classes[i]: float(probs[i]) for i in range(len(self.defect_classes))}
            
        except Exception as e:
            logger.error(f"Analysis error: {e}")
            return None

def get_groq_response(query: str, context: str) -> str:
    """Get response from Groq LLM"""
    try:
        client = Groq(api_key=os.getenv("GROQ_API_KEY"))
        
        prompt = f"""Based on the following context about construction defects, answer the question.
        Context: {context}
        Question: {query}
        Provide a detailed answer based on the given context."""

        response = client.chat.completions.create(
            messages=[
                {
                    "role": "system",
                    "content": "You are a construction defect analysis expert."
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            model="llama2-70b-4096",
            temperature=0.7,
        )
        return response.choices[0].message.content
    except Exception as e:
        logger.error(f"Groq API error: {e}")
        return f"Error: Unable to get response from AI model. Please check your API key and try again."

def main():
    st.set_page_config(
        page_title="Construction Defect Analyzer",
        page_icon="🏗️",
        layout="wide"
    )
    
    st.title("🏗️ Construction Defect Analyzer")
    
    # Initialize systems
    if 'analyzer' not in st.session_state:
        st.session_state.analyzer = ImageAnalyzer()
    if 'rag_system' not in st.session_state:
        st.session_state.rag_system = RAGSystem()
    
    # Create two columns
    col1, col2 = st.columns([1, 1])
    
    with col1:
        st.subheader("Image Analysis")
        uploaded_file = st.file_uploader("Upload a construction image for analysis", type=["jpg", "jpeg", "png"])

        if uploaded_file is not None:
            try:
                # Read and display image
                image = Image.open(uploaded_file)
                st.image(image, caption='Uploaded Image', use_column_width=True)
                
                # Analyze image
                with st.spinner('Analyzing image...'):
                    results = st.session_state.analyzer.analyze_image(image)
                    
                    if results:
                        st.success('Analysis complete!')
                        
                        # Display results
                        st.subheader("Detected Defects")
                        
                        # Create bar chart
                        fig, ax = plt.subplots(figsize=(8, 4))
                        defects = list(results.keys())
                        probs = list(results.values())
                        ax.barh(defects, probs)
                        ax.set_xlim(0, 1)
                        plt.tight_layout()
                        st.pyplot(fig)
                        
                        # Get most likely defect
                        most_likely_defect = max(results.items(), key=lambda x: x[1])[0]
                        st.info(f"Most likely defect: {most_likely_defect}")
                    else:
                        st.error("Analysis failed. Please try again.")
                    
            except Exception as e:
                st.error(f"Error: {str(e)}")
                logger.error(f"Process error: {e}")
    
    with col2:
        st.subheader("Ask About Defects")
        user_query = st.text_input(
            "Ask a question about the defects or repairs:",
            help="Example: What are the repair methods for spalling?"
        )
        
        if user_query:
            with st.spinner('Getting answer...'):
                # Get context from RAG system
                context = st.session_state.rag_system.get_relevant_context(user_query)
                
                # Get response from Groq
                response = get_groq_response(user_query, context)
                
                # Display response
                st.write("Answer:")
                st.write(response)
                
                # Option to view context
                with st.expander("View retrieved information"):
                    st.text(context)

    # Sidebar for information
    with st.sidebar:
        st.header("About")
        st.write("""
        This tool helps analyze construction defects in images and provides 
        information about repair methods and best practices.
        
        Features:
        - Image analysis for defect detection
        - Information lookup for repair methods
        - Expert AI responses to your questions
        """)
        
        # Display API status
        if os.getenv("GROQ_API_KEY"):
            st.success("Groq API: Connected")
        else:
            st.error("Groq API: Not configured")

if __name__ == "__main__":
    main()