shamik
commited on
fix: code fix.
Browse files
src/agent_hackathon/create_vector_db.py
CHANGED
|
@@ -138,12 +138,12 @@ class VectorDBCreator:
|
|
| 138 |
logger.info("Pipeline finished.")
|
| 139 |
|
| 140 |
|
| 141 |
-
if __name__ == "__main__":
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
|
|
|
| 138 |
logger.info("Pipeline finished.")
|
| 139 |
|
| 140 |
|
| 141 |
+
# if __name__ == "__main__":
|
| 142 |
+
# logger.info("Script started.")
|
| 143 |
+
# # Optionally load environment variables if needed
|
| 144 |
+
# _ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=True))
|
| 145 |
+
# creator = VectorDBCreator(
|
| 146 |
+
# data_path=f"{PROJECT_ROOT_DIR}/data/cs_data_arxiv.json", db_uri="arxiv_docs.db"
|
| 147 |
+
# )
|
| 148 |
+
# creator.run()
|
| 149 |
+
# logger.info("Script finished.")
|
src/agent_hackathon/generate_arxiv_responses.py
CHANGED
|
@@ -21,6 +21,7 @@ class ArxivResponseGenerator:
|
|
| 21 |
"""Initializes the ArxivResponseGenerator."""
|
| 22 |
self.vector_store_path = vector_store_path
|
| 23 |
self.client = self._initialise_client()
|
|
|
|
| 24 |
logger.info("ArxivResponseGenerator initialized.")
|
| 25 |
|
| 26 |
def _initialise_retriever(self) -> Any:
|
|
@@ -40,7 +41,7 @@ class ArxivResponseGenerator:
|
|
| 40 |
)
|
| 41 |
retriever = retriever_class.build_retriever_engine()
|
| 42 |
logger.info("Retriever engine initialized.")
|
| 43 |
-
return retriever
|
| 44 |
|
| 45 |
def _initialise_client(self) -> InferenceClient:
|
| 46 |
"""
|
|
@@ -68,11 +69,15 @@ class ArxivResponseGenerator:
|
|
| 68 |
str: Formatted response from the LLM.
|
| 69 |
"""
|
| 70 |
logger.info(f"Retrieving arXiv papers for query: {query}")
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
completion = self.client.chat.completions.create(
|
| 77 |
model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
| 78 |
temperature=0.1,
|
|
@@ -89,17 +94,15 @@ class ArxivResponseGenerator:
|
|
| 89 |
],
|
| 90 |
)
|
| 91 |
logger.info("Received completion from LLM.")
|
| 92 |
-
retriever_class.vector_store.client.close()
|
| 93 |
-
logger.info("Closed vector store client.")
|
| 94 |
return completion.choices[0].message.content
|
| 95 |
|
| 96 |
|
| 97 |
-
if __name__ == "__main__":
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
| 21 |
"""Initializes the ArxivResponseGenerator."""
|
| 22 |
self.vector_store_path = vector_store_path
|
| 23 |
self.client = self._initialise_client()
|
| 24 |
+
self.retriever = self._initialise_retriever()
|
| 25 |
logger.info("ArxivResponseGenerator initialized.")
|
| 26 |
|
| 27 |
def _initialise_retriever(self) -> Any:
|
|
|
|
| 41 |
)
|
| 42 |
retriever = retriever_class.build_retriever_engine()
|
| 43 |
logger.info("Retriever engine initialized.")
|
| 44 |
+
return retriever
|
| 45 |
|
| 46 |
def _initialise_client(self) -> InferenceClient:
|
| 47 |
"""
|
|
|
|
| 69 |
str: Formatted response from the LLM.
|
| 70 |
"""
|
| 71 |
logger.info(f"Retrieving arXiv papers for query: {query}")
|
| 72 |
+
|
| 73 |
+
try:
|
| 74 |
+
retrieved_content = json.dumps(
|
| 75 |
+
obj=[(i.get_content(), i.metadata) for i in self.retriever.retrieve(query)]
|
| 76 |
+
)
|
| 77 |
+
logger.info("Retrieved content from vector DB.")
|
| 78 |
+
except Exception as err:
|
| 79 |
+
logger.error(f"Error retrieving from vector DB: {err}")
|
| 80 |
+
raise
|
| 81 |
completion = self.client.chat.completions.create(
|
| 82 |
model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
| 83 |
temperature=0.1,
|
|
|
|
| 94 |
],
|
| 95 |
)
|
| 96 |
logger.info("Received completion from LLM.")
|
|
|
|
|
|
|
| 97 |
return completion.choices[0].message.content
|
| 98 |
|
| 99 |
|
| 100 |
+
# if __name__ == "__main__":
|
| 101 |
+
# logger.info("Script started.")
|
| 102 |
+
# generator = ArxivResponseGenerator(
|
| 103 |
+
# vector_store_path=PROJECT_ROOT_DIR / "db/arxiv_docs.db"
|
| 104 |
+
# )
|
| 105 |
+
# query = "deep learning for NLP" # Example query, replace as needed
|
| 106 |
+
# result = generator.retrieve_arxiv_papers(query=query)
|
| 107 |
+
# print(result)
|
| 108 |
+
# logger.info("Script finished.")
|
src/agent_hackathon/query_vector_db.py
CHANGED
|
@@ -5,7 +5,6 @@ from dotenv import find_dotenv, load_dotenv
|
|
| 5 |
from huggingface_hub import login
|
| 6 |
from llama_index.core import VectorStoreIndex
|
| 7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 8 |
-
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
| 9 |
from llama_index.vector_stores.milvus import MilvusVectorStore
|
| 10 |
|
| 11 |
from src.agent_hackathon.consts import PROJECT_ROOT_DIR
|
|
@@ -23,7 +22,6 @@ class RetrieverEngineBuilder:
|
|
| 23 |
self,
|
| 24 |
hf_token_env: str = "HF_TOKEN",
|
| 25 |
embedding_model: str = "Qwen/Qwen3-Embedding-0.6B",
|
| 26 |
-
llm_model: str = "meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
| 27 |
vector_store: MilvusVectorStore = None,
|
| 28 |
device: str = "cpu",
|
| 29 |
) -> None:
|
|
@@ -33,27 +31,21 @@ class RetrieverEngineBuilder:
|
|
| 33 |
Args:
|
| 34 |
hf_token_env: Environment variable name for HuggingFace token.
|
| 35 |
embedding_model: Name of the embedding model.
|
| 36 |
-
llm_model: Name of the LLM model.
|
| 37 |
vector_store: An instance of MilvusVectorStore.
|
| 38 |
device: Device to run the embedding model on.
|
| 39 |
"""
|
| 40 |
self.hf_token_env = hf_token_env
|
| 41 |
self.embedding_model = embedding_model
|
| 42 |
-
self.llm_model = llm_model
|
| 43 |
self.vector_store = vector_store
|
| 44 |
self.device = device
|
| 45 |
|
| 46 |
logger.info("Initializing RetrieverEngineBuilder.")
|
| 47 |
-
self._login_huggingface()
|
| 48 |
-
self._load_env()
|
| 49 |
|
| 50 |
self.embed_model = HuggingFaceEmbedding(
|
| 51 |
model_name=self.embedding_model, device=self.device
|
| 52 |
)
|
| 53 |
-
self.llm = HuggingFaceInferenceAPI(
|
| 54 |
-
model=self.llm_model,
|
| 55 |
-
provider="auto",
|
| 56 |
-
)
|
| 57 |
logger.info("RetrieverEngineBuilder initialized.")
|
| 58 |
|
| 59 |
def _login_huggingface(self) -> None:
|
|
@@ -65,7 +57,7 @@ class RetrieverEngineBuilder:
|
|
| 65 |
def _load_env(self) -> None:
|
| 66 |
"""Load environment variables from .env file."""
|
| 67 |
logger.info("Loading environment variables.")
|
| 68 |
-
_ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=
|
| 69 |
logger.info("Environment variables loaded.")
|
| 70 |
|
| 71 |
def build_retriever_engine(self) -> Any:
|
|
|
|
| 5 |
from huggingface_hub import login
|
| 6 |
from llama_index.core import VectorStoreIndex
|
| 7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
|
|
| 8 |
from llama_index.vector_stores.milvus import MilvusVectorStore
|
| 9 |
|
| 10 |
from src.agent_hackathon.consts import PROJECT_ROOT_DIR
|
|
|
|
| 22 |
self,
|
| 23 |
hf_token_env: str = "HF_TOKEN",
|
| 24 |
embedding_model: str = "Qwen/Qwen3-Embedding-0.6B",
|
|
|
|
| 25 |
vector_store: MilvusVectorStore = None,
|
| 26 |
device: str = "cpu",
|
| 27 |
) -> None:
|
|
|
|
| 31 |
Args:
|
| 32 |
hf_token_env: Environment variable name for HuggingFace token.
|
| 33 |
embedding_model: Name of the embedding model.
|
|
|
|
| 34 |
vector_store: An instance of MilvusVectorStore.
|
| 35 |
device: Device to run the embedding model on.
|
| 36 |
"""
|
| 37 |
self.hf_token_env = hf_token_env
|
| 38 |
self.embedding_model = embedding_model
|
|
|
|
| 39 |
self.vector_store = vector_store
|
| 40 |
self.device = device
|
| 41 |
|
| 42 |
logger.info("Initializing RetrieverEngineBuilder.")
|
| 43 |
+
# self._login_huggingface()
|
| 44 |
+
# self._load_env()
|
| 45 |
|
| 46 |
self.embed_model = HuggingFaceEmbedding(
|
| 47 |
model_name=self.embedding_model, device=self.device
|
| 48 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
logger.info("RetrieverEngineBuilder initialized.")
|
| 50 |
|
| 51 |
def _login_huggingface(self) -> None:
|
|
|
|
| 57 |
def _load_env(self) -> None:
|
| 58 |
"""Load environment variables from .env file."""
|
| 59 |
logger.info("Loading environment variables.")
|
| 60 |
+
_ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=False))
|
| 61 |
logger.info("Environment variables loaded.")
|
| 62 |
|
| 63 |
def build_retriever_engine(self) -> Any:
|