Shashank486's picture
create app.py
5fb95d7 verified
import torch
import open_clip
import gradio as gr
from datasets import load_dataset
from torchvision import transforms
from PIL import Image
import numpy as np
# Load the dataset (fashion product images dataset)
dataset = load_dataset("ceyda/fashion-products-small", split="train")
# Load CLIP model with correct unpacking and QuickGELU
model = open_clip.create_model("ViT-B-32-quickgelu", pretrained="openai")
# Corrected image transform function
preprocess = open_clip.image_transform(model.visual.image_size, is_train=False)
# Load tokenizer
tokenizer = open_clip.get_tokenizer("ViT-B-32")
# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Function to compute image embeddings
def get_image_embedding(image):
image = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model.encode_image(image)
return image_features / image_features.norm(dim=-1, keepdim=True)
# Function to compute text embeddings
def get_text_embedding(text):
text_inputs = tokenizer([text]).to(device)
with torch.no_grad():
text_features = model.encode_text(text_inputs)
return text_features / text_features.norm(dim=-1, keepdim=True)
# Precompute embeddings for all images in the dataset
image_embeddings = []
image_paths = []
for item in dataset.select(range(1000)): # Limit to 100 images for speed
image = item["image"]
image_embeddings.append(get_image_embedding(image))
image_paths.append(image)
# Stack all embeddings into a tensor
image_embeddings = torch.cat(image_embeddings, dim=0)
# Function to search for similar images based on text
def search_similar_image(query_text):
text_embedding = get_text_embedding(query_text)
similarities = (image_embeddings @ text_embedding.T).squeeze(1).cpu().numpy()
# Get top 20 matches
best_match_idxs = np.argsort(similarities)[-20:][::-1]
return [image_paths[i] for i in best_match_idxs]
# Function to search for similar images based on an uploaded image
def search_similar_by_image(uploaded_image):
query_embedding = get_image_embedding(uploaded_image)
similarities = (image_embeddings @ query_embedding.T).squeeze(1).cpu().numpy()
# Get top 20 matches
best_match_idxs = np.argsort(similarities)[-20:][::-1]
return [image_paths[i] for i in best_match_idxs]
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## 🛍️ Visual Search for Fashion Products")
gr.Markdown("Search using **text** or **upload an image** to find similar items.")
with gr.Row():
query_input = gr.Textbox(label="Search by Text", placeholder="e.g., red sneakers")
search_button = gr.Button("Search by Text")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload an Image")
image_search_button = gr.Button("Search by Image")
output_gallery = gr.Gallery(label="Similar Items", columns=4, height=500)
search_button.click(search_similar_image, inputs=[query_input], outputs=[output_gallery])
image_search_button.click(search_similar_by_image, inputs=[image_input], outputs=[output_gallery])
demo.launch(share=True)