Create / app.py
seawolf2357's picture
Update app.py
3233d92 verified
raw
history blame
5.64 kB
import spaces
import gradio as gr
import numpy as np
from PIL import Image
import random
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import torch
from transformers import pipeline as transformers_pipeline
import re
# Device selection for image generation (GPU if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Stable Diffusion XL pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"votepurchase/waiNSFWIllustrious_v120",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
# Force modules to fp16 for memory efficiency
pipe.text_encoder.to(torch.float16)
pipe.text_encoder_2.to(torch.float16)
pipe.vae.to(torch.float16)
pipe.unet.to(torch.float16)
# Korean → English translator (CPU only)
translator = transformers_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=-1, # -1 forces CPU
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
korean_regex = re.compile("[\uac00-\ud7af]+")
def maybe_translate(text: str) -> str:
"""Translate Korean text to English if Korean characters are detected."""
if korean_regex.search(text):
translation = translator(text, max_length=256, clean_up_tokenization_spaces=True)
return translation[0]["translation_text"]
return text
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
prompt = maybe_translate(prompt)
negative_prompt = maybe_translate(negative_prompt)
if len(prompt.split()) > 60:
print("Warning: Prompt may be too long and will be truncated by the model")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
output_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return output_image
except RuntimeError as e:
print(f"Error during generation: {e}")
error_img = Image.new("RGB", (width, height), color=(0, 0, 0))
return error_img
# Custom styling – bright pastel theme
css = """
body {background: #f2f1f7; color: #222; font-family: 'Noto Sans', sans-serif;}
#col-container {margin: 0 auto; max-width: 640px;}
.gr-button {background: #7fbdf6; color: #ffffff; border-radius: 8px;}
#prompt-box textarea {font-size: 1.1rem; height: 3rem; background: #ffffff; color: #222;}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
## 🖌️ Stable Diffusion XL Playground
Generate high‑quality illustrations with a single prompt.
**Tip:** Write in Korean or English. Korean will be translated automatically.
"""
)
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
elem_id="prompt-box",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (60 words max)",
)
run_button = gr.Button("Generate", scale=0)
result = gr.Image(label="", show_label=False)
# Adult anime‑style example prompts
examples = gr.Examples(
examples=[
["Seductive anime woman lounging in a dimly lit bar, adult anime style, ultra‑detail"],
["Moody mature anime scene of two lovers kissing under neon rain, sensual atmosphere"],
["Elegant vampire countess in gothic lingerie, candle‑lit boudoir, adult anime aesthetic"],
["Futuristic nightclub stage with a curvaceous android dancer, vibrant neon, adult anime"],
["Dark fantasy warrior queen in revealing armor, dramatic spotlight, adult anime style"],
],
inputs=[prompt],
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="nsfw, low quality, watermark, signature",
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024
)
height = gr.Slider(
label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7
)
num_inference_steps = gr.Slider(
label="Inference steps", minimum=1, maximum=28, step=1, value=28
)
run_button.click(
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result],
)
demo.queue().launch()