Spaces:
Runtime error
Runtime error
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| import pickle | |
| import torch | |
| import io | |
| #contents = pickle.load(f) becomes... | |
| #contents = CPU_Unpickler(f).load() | |
| model_path = "finbert.sav" | |
| #load model from drive | |
| with open(model_path, "rb") as f: | |
| model= pickle.load(f) | |
| #tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
| #model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) | |
| import nltk | |
| from finbert_embedding.embedding import FinbertEmbedding | |
| import pandas as pd | |
| from nltk.cluster import KMeansClusterer | |
| import numpy as np | |
| import os | |
| from scipy.spatial import distance_matrix | |
| from tensorflow.python.lib.io import file_io | |
| import pickle | |
| nltk.download('punkt') | |
| def make_extractive_summary(word): | |
| # Instantiate path to store each text Datafile in dataframe | |
| data_path = "/tmp/" | |
| if not os.path.exists(data_path): | |
| os.makedirs(data_path) | |
| input_ = "/tmp/input.txt" | |
| # Write file to disk so we can convert each datapoint to a txt file | |
| with open(input_, "w") as file: | |
| file.write(word) | |
| # read the written txt into a variable to start clustering | |
| with open(input_ , 'r') as f: | |
| text = f.read() | |
| # Create tokens from the txt file | |
| tokens = nltk.sent_tokenize(text) | |
| # Strip out trailing and leading white spaces from tokens | |
| sentences = [word.strip() for word in tokens] | |
| #Create a DataFrame from the tokens | |
| data = pd.DataFrame(sentences) | |
| # Assign name Sentences to the column containing text tokens | |
| data.columns = ['Sentences'] | |
| # Function to create numerical embeddings for each text tokens in dataframe | |
| def get_sentence_embeddings(): | |
| # Create empty list for sentence embeddings | |
| sentence_list = [] | |
| # Loop through all sentences and append sentence embeddings to list | |
| for i in tokens: | |
| sentence_embedding = model.sentence_vector(i) | |
| sentence_list.append(sentence_embedding) | |
| # Create empty list for ndarray | |
| sentence_array=[] | |
| # Loop through sentence list and change data type from tensor to array | |
| for i in sentence_list: | |
| sentence_array.append(i.numpy()) | |
| # return sentence embeddings as list | |
| return sentence_array | |
| # Apply get_sentence_embeddings to dataframe to create column Embeddings | |
| data['Embeddings'] = get_sentence_embeddings() | |
| #Number of expected sentences | |
| NUM_CLUSTERS = 10 | |
| iterations = 8 | |
| # Convert Embeddings into an array and store in variable X | |
| X = np.array(data['Embeddings'].to_list()) | |
| #Build k-means cluster algorithm | |
| Kclusterer = KMeansClusterer( | |
| NUM_CLUSTERS, | |
| distance = nltk.cluster.util.cosine_distance, | |
| repeats = iterations, avoid_empty_clusters = True) | |
| # if length of text is too short, K means would return an error | |
| # use the try except block to return the text as result if it is too short. | |
| try: | |
| assigned_clusters = Kclusterer.cluster(X,assign_clusters=True) | |
| # Apply Kmean Cluster to DataFrame and create new columns Clusters and Centroid | |
| data['Cluster'] = pd.Series(assigned_clusters, index = data.index) | |
| data['Centroid'] = data['Cluster'].apply(lambda x: Kclusterer.means()[x]) | |
| # return the text if clustering algorithm catches an exceptiona and move to the next text file | |
| except ValueError: | |
| return text | |
| # function that computes the distance of each embeddings from the centroid of the cluster | |
| def distance_from_centroid(row): | |
| return distance_matrix([row['Embeddings']], [row['Centroid'].tolist()])[0][0] | |
| # apply distance_from_centroid function to data | |
| data['Distance_From_Centroid'] = data.apply(distance_from_centroid, axis =1) | |
| ## Return Final Summary | |
| summary = " ".join(data.sort_values( | |
| 'Distance_From_Centroid', | |
| ascending = True).groupby('Cluster').head(1).sort_index()['Sentences'].tolist()) | |
| return summary | |
| import gradio as gr | |
| iface = gr.Interface(fn= make_extractive_summary, | |
| inputs =gr.inputs.Textbox(lines=15,placeholder="Enter your text !!"), | |
| outputs="text",title="Document Summarizer",description ="An AI that makes your life easier by helping you summarise long texts.") | |
| iface.launch(auth=("docai","ailabs")) |