File size: 16,628 Bytes
e6f8bfb 6eb1141 35eb8d1 6eb1141 3568934 6eb1141 c0ff7ce e6f8bfb 6eb1141 566269e 6eb1141 e6f8bfb 6eb1141 e6f8bfb 6eb1141 e6f8bfb 6eb1141 e6f8bfb 6eb1141 566269e 6eb1141 e6f8bfb 6eb1141 c0ff7ce 6eb1141 c0ff7ce 6eb1141 c0ff7ce e6f8bfb b5c239a 6eb1141 c0ff7ce e6f8bfb 6eb1141 c0ff7ce 6eb1141 c0ff7ce 6eb1141 227ad73 c0ff7ce 6eb1141 c0ff7ce 6eb1141 c0ff7ce 6eb1141 e6f8bfb 67efee3 6eb1141 c0ff7ce 6eb1141 e6f8bfb 6eb1141 e6f8bfb 6eb1141 c0ff7ce 88e8685 6eb1141 88e8685 c0ff7ce 6eb1141 c0ff7ce 88e8685 6eb1141 88e8685 c0ff7ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# Safe monkey patch to fix Streamlit reloader crash due to torch.classes bug
import types
import torch
try:
import torch.classes
if not hasattr(torch.classes, "__path__"):
torch.classes.__path__ = types.SimpleNamespace(_path=[])
except Exception:
pass # Safe fallback if torch.classes doesn't exist
# ------------------- Imports -------------------
import streamlit as st
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.metrics import accuracy_score, roc_auc_score
from rdkit import Chem
from rdkit.Chem import rdMolDescriptors
from rdkit.Chem.rdFingerprintGenerator import GetMorganGenerator
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.*')
from torch_geometric.data import Data
from torch_geometric.nn import GCNConv, global_mean_pool
from torch_geometric.loader import DataLoader
import plotly.express as px
from rdkit.Chem import Draw
from torch_geometric.data import Batch
from rdkit.Chem import Descriptors
import time
# ------------------- Models -------------------
class ToxicityNet(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Linear(1024, 512), nn.ReLU(),
nn.Dropout(0.3), nn.Linear(512, 128),
nn.ReLU(), nn.Linear(128, 1)
)
def forward(self, x):
return self.model(x)
class RichGCNModel(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = GCNConv(10, 64)
self.bn1 = nn.BatchNorm1d(64)
self.conv2 = GCNConv(64, 128)
self.bn2 = nn.BatchNorm1d(128)
self.dropout = nn.Dropout(0.2)
self.fc1 = nn.Linear(128, 64)
self.fc2 = nn.Linear(64, 1)
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
x = F.relu(self.bn1(self.conv1(x, edge_index)))
x = F.relu(self.bn2(self.conv2(x, edge_index)))
x = global_mean_pool(x, batch)
x = self.dropout(x)
x = F.relu(self.fc1(x))
return self.fc2(x)
# ------------------- UI Setup -------------------
st.set_page_config(layout="wide", page_title="Drug Toxicity Predictor")
st.title("π§ͺ Drug Toxicity Prediction Dashboard")
# ------------------- Load Models with Spinner -------------------
# ------------------- Load Models with Temporary Messages -------------------
fp_model = ToxicityNet()
gcn_model = RichGCNModel()
fp_loaded = gcn_loaded = False
# Load Fingerprint Model
try:
fp_model.load_state_dict(torch.load("tox_model.pt", map_location=torch.device("cpu")))
fp_model.eval()
fp_loaded = True
except Exception as e:
st.warning(f"β οΈ Fingerprint model not loaded: {e}")
# Load GCN Model
try:
gcn_model.load_state_dict(torch.load("gcn_model.pt", map_location=torch.device("cpu")))
gcn_model.eval()
gcn_loaded = True
except Exception as e:
st.warning(f"β οΈ GCN model not loaded: {e}")
# Load Best Threshold
try:
best_threshold = float(np.load("gcn_best_threshold.npy"))
except Exception as e:
best_threshold = 0.5
st.warning(f"β οΈ Using default threshold (0.5) for GCN model. Reason: {e}")
st.markdown(f"π **Fingerprint Model Loaded:** `{fp_loaded}`")
st.markdown(f"π **GCN Model Loaded:** `{gcn_loaded}`")
st.markdown(f"π **Threshold Value:** `{best_threshold}`")
# ------------------- Utility Functions -------------------
fp_gen = GetMorganGenerator(radius=2, fpSize=1024)
def get_molecule_info(mol):
return {
"Formula": Chem.rdMolDescriptors.CalcMolFormula(mol),
"Weight": round(Descriptors.MolWt(mol), 2),
"Atoms": mol.GetNumAtoms(),
"Bonds": mol.GetNumBonds()
}
def predict_gcn(smiles):
graph = smiles_to_graph(smiles)
if graph is None:
return None, None
batch = Batch.from_data_list([graph])
with torch.no_grad():
out = gcn_model(batch)
prob = torch.sigmoid(out).item()
return ("Toxic" if prob > best_threshold else "Non-toxic"), prob
def atom_feats(atom):
return [
atom.GetAtomicNum(),
atom.GetDegree(),
atom.GetFormalCharge(),
atom.GetNumExplicitHs(),
atom.GetNumImplicitHs(),
atom.GetIsAromatic(),
atom.GetMass(),
int(atom.IsInRing()),
int(atom.GetChiralTag()),
int(atom.GetHybridization())
]
def smiles_to_graph(smiles, label=None):
mol = Chem.MolFromSmiles(smiles)
if mol is None or mol.GetNumAtoms() == 0:
return None
atoms = [atom_feats(a) for a in mol.GetAtoms()]
if not atoms:
return None # No atoms present
edges = []
for b in mol.GetBonds():
i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx()
edges += [[i, j], [j, i]]
# Handle molecules with no bonds (e.g. single atom)
if len(edges) == 0:
edges = [[0, 0]]
edge_index = torch.tensor(edges, dtype=torch.long).t().contiguous()
x = torch.tensor(atoms, dtype=torch.float)
batch = torch.zeros(x.size(0), dtype=torch.long)
data = Data(x=x, edge_index=edge_index, batch=batch)
if label is not None:
data.y = torch.tensor([label], dtype=torch.float)
return data
# def predict_gcn(smiles):
# graph = smiles_to_graph(smiles)
# if graph is None or graph.x.size(0) == 0:
# return None, None
# batch = Batch.from_data_list([graph])
# with torch.no_grad():
# out = gcn_model(batch)
# raw = out.item()
# prob = torch.sigmoid(out).item()
# print(f"Raw logit: {raw:.4f}, Prob: {prob:.4f}")
# return ("Toxic" if prob > best_threshold else "Non-toxic"), prob
# ------------------- Load Dataset -------------------
# df = pd.read_csv("tox21.csv")[['smiles', 'SR-HSE']].dropna()
# df = df[df['SR-HSE'].isin([0, 1])]
# # π§Ό Filter out invalid SMILES
# df['mol'] = df['smiles'].apply(Chem.MolFromSmiles)
# df = df[df['mol'].notna()].reset_index(drop=True)
df = pd.read_csv("tox21.csv")[['smiles', 'SR-HSE']].dropna()
df = df[df['SR-HSE'].isin([0, 1])].reset_index(drop=True)
# β
Filter invalid or unprocessable SMILES
def is_valid_graph(smi):
mol = Chem.MolFromSmiles(smi)
return mol is not None and smiles_to_graph(smi) is not None
df = df[df['smiles'].apply(is_valid_graph)].reset_index(drop=True)
def create_graph_dataset(smiles_list, labels):
data_list = []
for smi, label in zip(smiles_list, labels):
data = smiles_to_graph(smi, label)
if data:
data_list.append(data)
return data_list
graph_data = create_graph_dataset(df['smiles'], df['SR-HSE'])
test_loader = DataLoader(graph_data, batch_size=32)
# ------------------- Plot Function -------------------
def plot_distribution(df, model_type, input_prob=None):
col = 'fp_prob' if model_type == 'fp' else 'gcn_prob'
df_plot = df[df[col].notna()].copy()
df_plot["Label"] = df_plot["SR-HSE"].map({0: "Non-toxic", 1: "Toxic"})
fig = px.histogram(df_plot, x=col, color="Label", nbins=30, barmode="overlay",
color_discrete_map={"Non-toxic": "green", "Toxic": "red"},
title=f"{model_type.upper()} Model - Test Set Distribution")
if input_prob:
fig.add_vline(x=input_prob, line_dash="dash", line_color="yellow", annotation_text="Your Input")
return fig
# ------------------- Prediction Cache -------------------
@st.cache_data(show_spinner="Generating predictions...")
def predict_fp(smiles):
try:
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return "Invalid SMILES", 0.0
fp = fp_gen.GetFingerprint(mol)
fp_array = np.array(fp).reshape(1, -1)
with torch.no_grad():
logits = fp_model(torch.tensor(fp_array).float())
prob = torch.sigmoid(logits).item()
return ("Toxic" if prob > 0.5 else "Non-toxic"), prob
except Exception as e:
return f"Error: {str(e)}", 0.0
def get_predictions(model_type='fp'):
preds = []
for smi in df['smiles']:
try:
p = predict_fp(smi)[1] if model_type == 'fp' else predict_gcn(smi)[1]
preds.append(p)
except:
preds.append(None)
return preds
df['fp_prob'] = get_predictions('fp') if fp_loaded else None
df['gcn_prob'] = get_predictions('gcn') if gcn_loaded else None
# ------------------- Evaluation Function -------------------
def evaluate_gcn_test_set(model, test_loader):
model.eval()
all_preds, all_labels = [], []
with torch.no_grad():
for batch in test_loader:
batch = batch.to("cpu") # Ensure on CPU
out = model(batch)
probs = torch.sigmoid(out)
all_preds.extend(probs.cpu().numpy())
all_labels.extend(batch.y.cpu().numpy())
acc = accuracy_score(all_labels, (np.array(all_preds) > 0.5).astype(int))
roc = roc_auc_score(all_labels, all_preds)
df_eval = pd.DataFrame({
"Predicted Probability": all_preds,
"Label": ["Non-toxic" if i == 0 else "Toxic" for i in all_labels]
})
fig = px.histogram(df_eval, x="Predicted Probability", color="Label",
nbins=30, barmode="overlay",
color_discrete_map={"Non-toxic": "green", "Toxic": "red"},
title="GCN Test Set - Probability Distribution")
fig.update_layout(bargap=0.1)
st.success(f"β
Accuracy: `{acc:.4f}`, ROC-AUC: `{roc:.4f}`")
st.plotly_chart(fig, use_container_width=True)
# ------------------- Tabs -------------------
tab1, tab2 = st.tabs(["π¬ Fingerprint Model", "𧬠GCN Model"])
with tab1:
st.subheader("Fingerprint-based Prediction")
with st.form("fp_form"):
smiles_fp = st.text_input("Enter SMILES", "CCO")
show_debug_fp = st.checkbox("π Show Debug Info (raw score/logit)", key="fp_debug")
predict_btn = st.form_submit_button("π Predict")
if predict_btn:
mol = Chem.MolFromSmiles(smiles_fp)
if mol:
fp = fp_gen.GetFingerprint(mol)
arr = np.array(fp).reshape(1, -1)
tensor = torch.tensor(arr).float()
with torch.no_grad():
output = fp_model(tensor)
prob = torch.sigmoid(output).item()
raw_score = output.item()
label = "Toxic" if prob > 0.5 else "Non-toxic"
color = "red" if label == "Toxic" else "green"
st.markdown(f"<h4>π§Ύ Prediction: <span style='color:{color}'>{label}</span> β <code>{prob:.3f}</code></h4>", unsafe_allow_html=True)
if show_debug_fp:
st.code(f"π Raw Logit: {raw_score:.4f}", language='text')
st.markdown("#### Fingerprint Vector (First 20 bits)")
st.code(str(arr[0][:20]) + " ...", language="text")
st.image(Draw.MolToImage(mol), caption="Molecular Structure", width=250)
info = get_molecule_info(mol)
st.markdown("### Molecule Info:")
for k, v in info.items():
st.markdown(f"**{k}:** {v}")
st.plotly_chart(plot_distribution(df, 'fp', prob), use_container_width=True)
else:
st.error("β Invalid SMILES input. Please check your string.")
with st.expander("π Example SMILES to Try"):
st.markdown("""
- `CCO` (Ethanol)
- `CC(=O)O` (Acetic Acid)
- `c1ccccc1` (Benzene)
- `CCN(CC)CC` (Triethylamine)
- `C1=CC=CN=C1` (Pyridine)
""")
with st.expander("π§ͺ Top 5 Toxic Predictions from Test Set (Fingerprint Model)"):
if 'fp_prob' in df:
top_toxic_fp = df[df['fp_prob'] > 0.5].sort_values('fp_prob', ascending=False)
def is_valid_fp(smi):
return Chem.MolFromSmiles(smi) is not None
top_toxic_fp = top_toxic_fp[top_toxic_fp['smiles'].apply(is_valid_fp)].head(5)
if not top_toxic_fp.empty:
st.table(top_toxic_fp[['smiles', 'fp_prob']].rename(columns={'fp_prob': 'Predicted Probability'}))
else:
st.info("No valid top fingerprint predictions available.")
else:
st.info("Fingerprint model predictions not available.")
with tab2:
st.subheader("Graph Neural Network Prediction")
SUPPORTED_ATOMS = {1, 6, 7, 8, 9, 16, 17, 35, 53} # H, C, N, O, F, S, Cl, Br, I
def is_supported(mol):
return all(atom.GetAtomicNum() in SUPPORTED_ATOMS for atom in mol.GetAtoms())
with st.form("gcn_form"):
smiles_gcn = st.text_input("Enter SMILES", "c1ccccc1", key="gcn_smiles")
show_debug = st.checkbox("π Show Debug Info (raw score/logit)")
gcn_btn = st.form_submit_button("π Predict")
if gcn_btn:
mol = Chem.MolFromSmiles(smiles_gcn)
if mol is None:
st.error("β Invalid SMILES: could not parse molecule.")
elif not is_supported(mol):
st.error("β οΈ This molecule contains unsupported atoms (e.g. Sn, P, etc.). GCN model only supports common organic elements.")
else:
graph = smiles_to_graph(smiles_gcn)
if graph is None:
st.error("β SMILES is valid but could not be converted to graph. Possibly malformed structure.")
else:
batch = Batch.from_data_list([graph])
with torch.no_grad():
out = gcn_model(batch)
prob = torch.sigmoid(out).item()
raw_score = out.item()
label = "Toxic" if prob > best_threshold else "Non-toxic"
color = "red" if label == "Toxic" else "green"
st.markdown(f"<h4>π§Ύ GCN Prediction: <span style='color:{color}'>{label}</span> β <code>{prob:.3f}</code></h4>", unsafe_allow_html=True)
if show_debug:
st.code(f"π Raw Logit: {raw_score:.4f}", language='text')
st.image(Draw.MolToImage(mol), caption="Molecular Structure", width=250)
def get_molecule_info(mol):
return {
"Molecular Weight": round(Chem.Descriptors.MolWt(mol), 2),
"LogP": round(Chem.Crippen.MolLogP(mol), 2),
"Num H-Bond Donors": Chem.Lipinski.NumHDonors(mol),
"Num H-Bond Acceptors": Chem.Lipinski.NumHAcceptors(mol),
"TPSA": round(Chem.rdMolDescriptors.CalcTPSA(mol), 2),
"Num Rotatable Bonds": Chem.Lipinski.NumRotatableBonds(mol)
}
info = get_molecule_info(mol)
st.markdown("### Molecule Info:")
for k, v in info.items():
st.markdown(f"**{k}:** {v}")
st.plotly_chart(plot_distribution(df, 'gcn', prob), use_container_width=True)
with st.expander("π Example SMILES to Try"):
st.markdown("""
- `c1ccccc1` (Benzene)
- `C1=CC=CC=C1O` (Phenol)
- `CC(=O)OC1=CC=CC=C1C(=O)O` (Aspirin)
- `NCC(O)=O` (Glycine)
- `C1CCC(CC1)NC(=O)C2=CC=CC=C2` (Cyclohexylbenzamide)
""")
with st.expander("π₯ Download GCN Model Predictions"):
if 'gcn_prob' in df:
def is_valid_gcn(smi):
mol = Chem.MolFromSmiles(smi)
return mol is not None and is_supported(mol) and smiles_to_graph(smi) is not None
df_valid = df[df['smiles'].apply(is_valid_gcn)].copy()
csv_gcn = df_valid[['smiles', 'gcn_prob', 'SR-HSE']].dropna().to_csv(index=False)
st.download_button("Download CSV", csv_gcn, "gcn_predictions.csv", "text/csv")
else:
st.info("Predictions not available yet.")
with st.expander("π§ͺ Top 5 Toxic Predictions from Test Set"):
if 'gcn_prob' in df:
def is_valid_gcn(smi):
mol = Chem.MolFromSmiles(smi)
return mol is not None and is_supported(mol) and smiles_to_graph(smi) is not None
top_toxic = df[df['gcn_prob'] > best_threshold].copy()
top_toxic = top_toxic[top_toxic['smiles'].apply(is_valid_gcn)]
top_toxic = top_toxic.sort_values('gcn_prob', ascending=False).head(5)
if not top_toxic.empty:
st.table(top_toxic[['smiles', 'gcn_prob']].rename(columns={'gcn_prob': 'Predicted Probability'}))
else:
st.info("No valid top predictions available.")
else:
st.info("GCN model predictions not available.")
|