|
import numpy as np |
|
import gradio as gr |
|
from PIL import ImageDraw |
|
|
|
from utils.tools_gradio import fast_process |
|
from utils.tools import format_results, box_prompt, point_prompt, text_prompt |
|
|
|
|
|
def segment_everything( |
|
model, |
|
device, |
|
input, |
|
input_size=1024, |
|
iou_threshold=0.7, |
|
conf_threshold=0.25, |
|
better_quality=False, |
|
withContours=True, |
|
use_retina=True, |
|
text="", |
|
wider=False, |
|
mask_random_color=True, |
|
): |
|
input_size = int(input_size) |
|
w, h = input.size |
|
scale = input_size / max(w, h) |
|
new_w = int(w * scale) |
|
new_h = int(h * scale) |
|
input = input.resize((new_w, new_h)) |
|
|
|
results = model(input, |
|
device=device, |
|
retina_masks=True, |
|
iou=iou_threshold, |
|
conf=conf_threshold, |
|
imgsz=input_size, ) |
|
|
|
if len(text) > 0: |
|
results = format_results(results[0], 0) |
|
annotations, _ = text_prompt(results, text, input, device=device, wider=wider) |
|
annotations = np.array([annotations]) |
|
else: |
|
annotations = results[0].masks.data |
|
|
|
fig = fast_process(annotations=annotations, |
|
image=input, |
|
device=device, |
|
scale=(1024 // input_size), |
|
better_quality=better_quality, |
|
mask_random_color=mask_random_color, |
|
bbox=None, |
|
use_retina=use_retina, |
|
withContours=withContours, ) |
|
return fig |
|
|
|
|
|
def segment_with_points( |
|
model, |
|
device, |
|
input, |
|
input_size=1024, |
|
iou_threshold=0.7, |
|
conf_threshold=0.25, |
|
better_quality=False, |
|
withContours=True, |
|
use_retina=True, |
|
mask_random_color=True, |
|
): |
|
global global_points |
|
global global_point_label |
|
|
|
input_size = int(input_size) |
|
w, h = input.size |
|
scale = input_size / max(w, h) |
|
new_w = int(w * scale) |
|
new_h = int(h * scale) |
|
input = input.resize((new_w, new_h)) |
|
|
|
scaled_points = [[int(x * scale) for x in point] for point in global_points] |
|
|
|
results = model(input, |
|
device=device, |
|
retina_masks=True, |
|
iou=iou_threshold, |
|
conf=conf_threshold, |
|
imgsz=input_size, ) |
|
|
|
results = format_results(results[0], 0) |
|
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w) |
|
annotations = np.array([annotations]) |
|
|
|
fig = fast_process(annotations=annotations, |
|
image=input, |
|
device=device, |
|
scale=(1024 // input_size), |
|
better_quality=better_quality, |
|
mask_random_color=mask_random_color, |
|
bbox=None, |
|
use_retina=use_retina, |
|
withContours=withContours, ) |
|
|
|
global_points = [] |
|
global_point_label = [] |
|
return fig, None |
|
|
|
|
|
def get_points_with_draw(image, label, evt: gr.SelectData): |
|
global global_points |
|
global global_point_label |
|
|
|
x, y = evt.index[0], evt.index[1] |
|
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255) |
|
global_points.append([x, y]) |
|
global_point_label.append(1 if label == 'Add Mask' else 0) |
|
|
|
print(x, y, label == 'Add Mask') |
|
|
|
draw = ImageDraw.Draw(image) |
|
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color) |
|
return image |
|
|