Delete utils_inference.py
Browse files- utils_inference.py +0 -119
utils_inference.py
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import gradio as gr
|
3 |
-
from PIL import ImageDraw
|
4 |
-
|
5 |
-
from tools_gradio import fast_process
|
6 |
-
from tools import format_results, box_prompt, point_prompt, text_prompt
|
7 |
-
|
8 |
-
|
9 |
-
def segment_everything(
|
10 |
-
model,
|
11 |
-
device,
|
12 |
-
input,
|
13 |
-
input_size=1024,
|
14 |
-
iou_threshold=0.7,
|
15 |
-
conf_threshold=0.25,
|
16 |
-
better_quality=False,
|
17 |
-
withContours=True,
|
18 |
-
use_retina=True,
|
19 |
-
text="",
|
20 |
-
wider=False,
|
21 |
-
mask_random_color=True,
|
22 |
-
):
|
23 |
-
input_size = int(input_size)
|
24 |
-
w, h = input.size
|
25 |
-
scale = input_size / max(w, h)
|
26 |
-
new_w = int(w * scale)
|
27 |
-
new_h = int(h * scale)
|
28 |
-
input = input.resize((new_w, new_h))
|
29 |
-
|
30 |
-
results = model(input,
|
31 |
-
device=device,
|
32 |
-
retina_masks=True,
|
33 |
-
iou=iou_threshold,
|
34 |
-
conf=conf_threshold,
|
35 |
-
imgsz=input_size, )
|
36 |
-
|
37 |
-
if len(text) > 0:
|
38 |
-
results = format_results(results[0], 0)
|
39 |
-
annotations, _ = text_prompt(results, text, input, device=device, wider=wider)
|
40 |
-
annotations = np.array([annotations])
|
41 |
-
else:
|
42 |
-
annotations = results[0].masks.data
|
43 |
-
|
44 |
-
fig = fast_process(annotations=annotations,
|
45 |
-
image=input,
|
46 |
-
device=device,
|
47 |
-
scale=(1024 // input_size),
|
48 |
-
better_quality=better_quality,
|
49 |
-
mask_random_color=mask_random_color,
|
50 |
-
bbox=None,
|
51 |
-
use_retina=use_retina,
|
52 |
-
withContours=withContours, )
|
53 |
-
return fig
|
54 |
-
|
55 |
-
|
56 |
-
def segment_with_points(
|
57 |
-
model,
|
58 |
-
device,
|
59 |
-
input,
|
60 |
-
input_size=1024,
|
61 |
-
iou_threshold=0.7,
|
62 |
-
conf_threshold=0.25,
|
63 |
-
better_quality=False,
|
64 |
-
withContours=True,
|
65 |
-
use_retina=True,
|
66 |
-
mask_random_color=True,
|
67 |
-
):
|
68 |
-
global global_points
|
69 |
-
global global_point_label
|
70 |
-
|
71 |
-
input_size = int(input_size)
|
72 |
-
w, h = input.size
|
73 |
-
scale = input_size / max(w, h)
|
74 |
-
new_w = int(w * scale)
|
75 |
-
new_h = int(h * scale)
|
76 |
-
input = input.resize((new_w, new_h))
|
77 |
-
|
78 |
-
scaled_points = [[int(x * scale) for x in point] for point in global_points]
|
79 |
-
|
80 |
-
results = model(input,
|
81 |
-
device=device,
|
82 |
-
retina_masks=True,
|
83 |
-
iou=iou_threshold,
|
84 |
-
conf=conf_threshold,
|
85 |
-
imgsz=input_size, )
|
86 |
-
|
87 |
-
results = format_results(results[0], 0)
|
88 |
-
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
|
89 |
-
annotations = np.array([annotations])
|
90 |
-
|
91 |
-
fig = fast_process(annotations=annotations,
|
92 |
-
image=input,
|
93 |
-
device=device,
|
94 |
-
scale=(1024 // input_size),
|
95 |
-
better_quality=better_quality,
|
96 |
-
mask_random_color=mask_random_color,
|
97 |
-
bbox=None,
|
98 |
-
use_retina=use_retina,
|
99 |
-
withContours=withContours, )
|
100 |
-
|
101 |
-
global_points = []
|
102 |
-
global_point_label = []
|
103 |
-
return fig, None
|
104 |
-
|
105 |
-
|
106 |
-
def get_points_with_draw(image, label, evt: gr.SelectData):
|
107 |
-
global global_points
|
108 |
-
global global_point_label
|
109 |
-
|
110 |
-
x, y = evt.index[0], evt.index[1]
|
111 |
-
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
|
112 |
-
global_points.append([x, y])
|
113 |
-
global_point_label.append(1 if label == 'Add Mask' else 0)
|
114 |
-
|
115 |
-
print(x, y, label == 'Add Mask')
|
116 |
-
|
117 |
-
draw = ImageDraw.Draw(image)
|
118 |
-
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
|
119 |
-
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|