Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from base64 import b64encode
|
2 |
-
|
3 |
import numpy
|
4 |
import torch
|
5 |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
@@ -16,8 +16,7 @@ from transformers import CLIPTextModel, CLIPTokenizer, logging
|
|
16 |
import os
|
17 |
import numpy as np
|
18 |
|
19 |
-
torch.manual_seed(
|
20 |
-
# if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()
|
21 |
|
22 |
# Supress some unnecessary warnings when loading the CLIPTextModel
|
23 |
logging.set_verbosity_error()
|
@@ -172,15 +171,47 @@ def generate_with_prompt_style(prompt, style, seed = 42):
|
|
172 |
# And generate an image with this:
|
173 |
return generate_with_embs(modified_output_embeddings, text_input, seed)
|
174 |
|
|
|
|
|
|
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
def blue_loss(images):
|
186 |
"""
|
@@ -294,7 +325,7 @@ def generate_with_prompt_style_guidance(prompt, style, seed=42):
|
|
294 |
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
295 |
|
296 |
# Calculate loss
|
297 |
-
loss =
|
298 |
|
299 |
# # Occasionally print it out
|
300 |
# if i%10==0:
|
|
|
1 |
from base64 import b64encode
|
2 |
+
import torch
|
3 |
import numpy
|
4 |
import torch
|
5 |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
|
|
16 |
import os
|
17 |
import numpy as np
|
18 |
|
19 |
+
torch.manual_seed(24041975)
|
|
|
20 |
|
21 |
# Supress some unnecessary warnings when loading the CLIPTextModel
|
22 |
logging.set_verbosity_error()
|
|
|
171 |
# And generate an image with this:
|
172 |
return generate_with_embs(modified_output_embeddings, text_input, seed)
|
173 |
|
174 |
+
def contrast_loss(images):
|
175 |
+
variance = torch.var(images)
|
176 |
+
return -variance
|
177 |
|
178 |
+
def blue_loss_variant(images, use_mean=False, alpha=1.0):
|
179 |
+
"""
|
180 |
+
Computes the blue loss for a batch of images with an optional mean component.
|
181 |
+
|
182 |
+
The blue loss is defined as the negative variance of the blue channel's pixel values.
|
183 |
+
Optionally, it can also include the mean value of the blue channel.
|
184 |
|
185 |
+
Parameters:
|
186 |
+
images (torch.Tensor): A batch of images. Expected shape is (N, C, H, W) where
|
187 |
+
N is the batch size, C is the number of channels (3 for RGB),
|
188 |
+
H is the height, and W is the width.
|
189 |
+
use_mean (bool): If True, includes the mean of the blue channel in the loss calculation.
|
190 |
+
alpha (float): Weighting factor for the mean component when use_mean is True.
|
191 |
|
192 |
+
Returns:
|
193 |
+
torch.Tensor: The blue loss, which is the negative variance of the blue channel's pixel values,
|
194 |
+
optionally combined with the mean value of the blue channel.
|
195 |
+
"""
|
196 |
+
# Ensure the input tensor has the correct shape
|
197 |
+
if images.shape[1] != 3:
|
198 |
+
raise ValueError("Expected images with 3 channels (RGB), but got shape {}".format(images.shape))
|
199 |
+
|
200 |
+
# Extract the blue channel (assuming the channels are in RGB order)
|
201 |
+
blue_channel = images[:, 2, :, :]
|
202 |
+
|
203 |
+
# Calculate the variance of the blue channel
|
204 |
+
variance = torch.var(blue_channel)
|
205 |
+
|
206 |
+
if use_mean:
|
207 |
+
# Calculate the mean of the blue channel
|
208 |
+
mean = torch.mean(blue_channel)
|
209 |
+
# Combine variance and mean into the loss
|
210 |
+
loss = -variance + alpha * mean
|
211 |
+
else:
|
212 |
+
loss = -variance
|
213 |
+
|
214 |
+
return loss
|
215 |
|
216 |
def blue_loss(images):
|
217 |
"""
|
|
|
325 |
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
326 |
|
327 |
# Calculate loss
|
328 |
+
loss = blue_loss_variant(denoised_images) * contrast_loss_scale
|
329 |
|
330 |
# # Occasionally print it out
|
331 |
# if i%10==0:
|