Shivdutta commited on
Commit
6338e31
·
verified ·
1 Parent(s): 3051b5f

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -96,12 +96,12 @@ def latents_to_pil(latents):
96
  return pil_images
97
 
98
 
99
- def generate_with_embs(text_embeddings, text_input, seed):
100
 
101
  height = 512 # default height of Stable Diffusion
102
  width = 512 # default width of Stable Diffusion
103
- num_inference_steps = 10 # Number of denoising steps
104
- guidance_scale = 7.5 # Scale for classifier-free guidance
105
  generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
106
  batch_size = 1
107
 
@@ -291,12 +291,14 @@ dict_styles = {
291
  'Oil Painting':'styles/learned_embeds_oil.bin',
292
  }
293
 
294
- def inference(prompt, style,seed):
295
 
296
  if prompt is not None and style is not None and seed is not None:
297
  style = dict_styles[style]
298
  torch.manual_seed(seed)
299
- result = generate_with_prompt_style_guidance(prompt, style,seed)
 
 
300
  return np.array(result)
301
  else:
302
  return None
 
96
  return pil_images
97
 
98
 
99
+ def generate_with_embs(text_embeddings, text_input, seed,num_inference_steps,guidance_scale):
100
 
101
  height = 512 # default height of Stable Diffusion
102
  width = 512 # default width of Stable Diffusion
103
+ num_inference_steps = num_inference_steps # 10 # Number of denoising steps
104
+ guidance_scale = guidance_scale # 7.5 # Scale for classifier-free guidance
105
  generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
106
  batch_size = 1
107
 
 
291
  'Oil Painting':'styles/learned_embeds_oil.bin',
292
  }
293
 
294
+ def inference(prompt, seed, style):
295
 
296
  if prompt is not None and style is not None and seed is not None:
297
  style = dict_styles[style]
298
  torch.manual_seed(seed)
299
+ num_inference_steps =10
300
+ guidance_scale =7.5
301
+ result = generate_with_prompt_style_guidance(prompt, style,seed,num_inference_steps,guidance_scale)
302
  return np.array(result)
303
  else:
304
  return None