Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +151 -0
- requirements.txt +10 -0
app.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from torchvision.transforms.functional import to_tensor
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
def blue_loss(images):
|
| 7 |
+
"""
|
| 8 |
+
Custom loss function to penalize or encourage the presence of blue hues in the images.
|
| 9 |
+
"""
|
| 10 |
+
# Convert images to tensors
|
| 11 |
+
images_tensor = torch.tensor(images).float() / 255.0
|
| 12 |
+
|
| 13 |
+
# Extract the blue channel (last channel in RGB)
|
| 14 |
+
blue_channel = images_tensor[:, :, :, 2]
|
| 15 |
+
|
| 16 |
+
# Calculate variance of the blue channel
|
| 17 |
+
variance = torch.var(blue_channel)
|
| 18 |
+
|
| 19 |
+
# Return negative variance as the loss (penalize less blue)
|
| 20 |
+
return -variance
|
| 21 |
+
|
| 22 |
+
def generate_with_prompt_style_guidance(prompt, style, seed=42):
|
| 23 |
+
prompt = prompt + ' in style of s'
|
| 24 |
+
|
| 25 |
+
embed = torch.load(style)
|
| 26 |
+
|
| 27 |
+
height = 512
|
| 28 |
+
width = 512
|
| 29 |
+
num_inference_steps = 10
|
| 30 |
+
guidance_scale = 8
|
| 31 |
+
generator = torch.manual_seed(seed)
|
| 32 |
+
batch_size = 1
|
| 33 |
+
contrast_loss_scale = 200
|
| 34 |
+
blue_loss_scale = 100 # Scale for blue loss
|
| 35 |
+
|
| 36 |
+
# Prep text
|
| 37 |
+
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
|
| 40 |
+
|
| 41 |
+
input_ids = text_input.input_ids.to(torch_device)
|
| 42 |
+
|
| 43 |
+
# Get token embeddings
|
| 44 |
+
token_embeddings = token_emb_layer(input_ids)
|
| 45 |
+
|
| 46 |
+
# The new embedding - our special birb word
|
| 47 |
+
replacement_token_embedding = embed[list(embed.keys())[0]].to(torch_device)
|
| 48 |
+
|
| 49 |
+
# Insert this into the token embeddings
|
| 50 |
+
token_embeddings[0, torch.where(input_ids[0] == 338)] = replacement_token_embedding.to(torch_device)
|
| 51 |
+
|
| 52 |
+
# Combine with pos embs
|
| 53 |
+
input_embeddings = token_embeddings + position_embeddings
|
| 54 |
+
|
| 55 |
+
# Feed through to get final output embs
|
| 56 |
+
modified_output_embeddings = get_output_embeds(input_embeddings)
|
| 57 |
+
|
| 58 |
+
# And the uncond. input as before:
|
| 59 |
+
max_length = text_input.input_ids.shape[-1]
|
| 60 |
+
uncond_input = tokenizer(
|
| 61 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
| 62 |
+
)
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
| 65 |
+
|
| 66 |
+
text_embeddings = torch.cat([uncond_embeddings, modified_output_embeddings])
|
| 67 |
+
|
| 68 |
+
# Prep Scheduler
|
| 69 |
+
scheduler.set_timesteps(num_inference_steps)
|
| 70 |
+
|
| 71 |
+
# Prep latents
|
| 72 |
+
latents = torch.randn(
|
| 73 |
+
(batch_size, unet.config.in_channels, height // 8, width // 8),
|
| 74 |
+
generator=generator,
|
| 75 |
+
)
|
| 76 |
+
latents = latents.to(torch_device)
|
| 77 |
+
latents = latents * scheduler.init_noise_sigma
|
| 78 |
+
|
| 79 |
+
# Loop
|
| 80 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
| 81 |
+
# Expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
| 82 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 83 |
+
sigma = scheduler.sigmas[i]
|
| 84 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
| 85 |
+
|
| 86 |
+
# Predict the noise residual
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
| 89 |
+
|
| 90 |
+
# Perform CFG
|
| 91 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 92 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 93 |
+
|
| 94 |
+
# Additional Guidance
|
| 95 |
+
if i % 5 == 0:
|
| 96 |
+
# Requires grad on the latents
|
| 97 |
+
latents = latents.detach().requires_grad_()
|
| 98 |
+
|
| 99 |
+
# Get the predicted x0
|
| 100 |
+
latents_x0 = latents - sigma * noise_pred
|
| 101 |
+
|
| 102 |
+
# Decode to image space
|
| 103 |
+
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
|
| 104 |
+
|
| 105 |
+
# Calculate losses
|
| 106 |
+
contrast_loss_val = contrast_loss(denoised_images) * contrast_loss_scale
|
| 107 |
+
blue_loss_val = blue_loss(denoised_images) * blue_loss_scale
|
| 108 |
+
|
| 109 |
+
# Combine losses
|
| 110 |
+
total_loss = contrast_loss_val + blue_loss_val
|
| 111 |
+
|
| 112 |
+
# Get gradient
|
| 113 |
+
cond_grad = torch.autograd.grad(total_loss, latents)[0]
|
| 114 |
+
|
| 115 |
+
# Modify the latents based on this gradient
|
| 116 |
+
latents = latents.detach() - cond_grad * sigma**2
|
| 117 |
+
|
| 118 |
+
# Now step with scheduler
|
| 119 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
| 120 |
+
|
| 121 |
+
return latents_to_pil(latents)[0]
|
| 122 |
+
|
| 123 |
+
import gradio as gr
|
| 124 |
+
|
| 125 |
+
dict_styles = {
|
| 126 |
+
'Dr Strange': 'styles/learned_embeds_dr_strange.bin',
|
| 127 |
+
'GTA-5':'styles/learned_embeds_gta5.bin',
|
| 128 |
+
'Manga':'styles/learned_embeds_manga.bin',
|
| 129 |
+
'Pokemon':'styles/learned_embeds_pokemon.bin',
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
def inference(prompt, style):
|
| 133 |
+
if prompt is not None and style is not None:
|
| 134 |
+
style = dict_styles[style]
|
| 135 |
+
result = generate_with_prompt_style_guidance(prompt, style)
|
| 136 |
+
return np.array(result)
|
| 137 |
+
else:
|
| 138 |
+
return None
|
| 139 |
+
|
| 140 |
+
title = "Stable Diffusion and Textual Inversion"
|
| 141 |
+
description = "A simple Gradio interface to stylize Stable Diffusion outputs"
|
| 142 |
+
examples = [['A man sipping wine wearing a spacesuit on the moon', 'Stripes']]
|
| 143 |
+
|
| 144 |
+
demo = gr.Interface(inference,
|
| 145 |
+
inputs=[gr.Textbox(label='Prompt'),
|
| 146 |
+
gr.Dropdown(['Dr Strange', 'GTA-5', 'Manga', 'Pokemon'], label='Style')],
|
| 147 |
+
outputs=[gr.Image(label="Stable Diffusion Output")],
|
| 148 |
+
title=title,
|
| 149 |
+
description=description,
|
| 150 |
+
examples=examples)
|
| 151 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers==4.25.1
|
| 3 |
+
diffusers
|
| 4 |
+
ftfy
|
| 5 |
+
torchvision
|
| 6 |
+
tqdm
|
| 7 |
+
numpy
|
| 8 |
+
accelerate
|
| 9 |
+
scipy
|
| 10 |
+
Pillow
|