File size: 6,317 Bytes
70d113f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55e8481
70d113f
55e8481
70d113f
55e8481
 
 
c70b1b3
 
55e8481
70d113f
 
 
55e8481
 
 
 
 
c70b1b3
 
55e8481
 
 
 
 
70d113f
c70b1b3
 
 
 
70d113f
 
 
edd7da8
 
70d113f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
import peft
from peft import LoraConfig
from transformers import AutoTokenizer,BitsAndBytesConfig, AutoModelForCausalLM, CLIPVisionModel, AutoProcessor
import torch
from peft import PeftModel
import torch.nn as nn
import whisperx

# Determine the appropriate device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Set compute_type based on device capabilities
if device == "cuda" and torch.cuda.is_bf16_supported():
    compute_type = "float16"
elif device == "cuda":
    compute_type = "float32"
else:
    compute_type = "int8"


clip_model_name = "openai/clip-vit-base-patch32"
phi_model_name  = "microsoft/phi-2"
tokenizer  = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True)
processor  = AutoProcessor.from_pretrained(clip_model_name)
tokenizer.pad_token = tokenizer.eos_token
IMAGE_TOKEN_ID = 23893 # token for word comment
QA_TOKEN_ID = 50295 # token for qa
device = "cuda" if torch.cuda.is_available() else "cpu"
clip_embed = 768
phi_embed  = 2560
compute_type = "float16"
audio_batch_size = 16

class SimpleResBlock(nn.Module):
    def __init__(self, phi_embed):
        super().__init__()
        self.pre_norm = nn.LayerNorm(phi_embed)
        self.proj = nn.Sequential(
            nn.Linear(phi_embed, phi_embed),
            nn.GELU(),
            nn.Linear(phi_embed, phi_embed)
        )
    def forward(self, x):
        x = self.pre_norm(x)
        return x + self.proj(x)



# models
clip_model = CLIPVisionModel.from_pretrained(clip_model_name).to(device)
projection = torch.nn.Linear(clip_embed, phi_embed).to(device)
resblock = SimpleResBlock(phi_embed).to(device)
phi_model = AutoModelForCausalLM.from_pretrained(phi_model_name,trust_remote_code=True).to(device)
# Load the model with the appropriate compute_type
# Load the audio model with appropriate compute_type
audio_model_size = "tiny"
compute_type = "float32"  # Ensure using a compatible compute type
try:
    audio_model = whisperx.load_model(
        audio_model_size,
        device,
        compute_type=compute_type
        # Removed unsupported parameters
    )
    print(f"Model loaded successfully with compute_type: {compute_type}")
except ValueError as e:
    print(f"Error loading model: {e}")
    # Optionally, try loading with int8 if necessary
    try:
        audio_model = whisperx.load_model(
            audio_model_size,
            device,
            compute_type="int8"
            # Removed unsupported parameters
        )
        print("Fell back to int8 compute type successfully.")
    except Exception as e:
        print(f"Failed to load model with int8: {e}")






# load weights
model_to_merge = PeftModel.from_pretrained(phi_model,'./model_chkpt/lora_adaptor')
merged_model   = model_to_merge.merge_and_unload()
projection.load_state_dict(torch.load('./model_chkpt/finetunned_projection.pth',map_location=torch.device(device)))
resblock.load_state_dict(torch.load('./model_chkpt/finetuned_resblock.pth',map_location=torch.device(device)))

def model_generate_ans(img=None,img_audio=None,val_q=None):

    max_generate_length = 100
    val_combined_embeds = []
    
    with torch.no_grad():
    
        # image
        if img is not None:
            image_processed  = processor(images=img, return_tensors="pt").to(device)
            clip_val_outputs = clip_model(**image_processed).last_hidden_state[:,1:,:]
            val_image_embeds = projection(clip_val_outputs)
            val_image_embeds = resblock(val_image_embeds).to(torch.float16)
            
            img_token_tensor = torch.tensor(IMAGE_TOKEN_ID).to(device)
            img_token_embeds = merged_model.model.embed_tokens(img_token_tensor).unsqueeze(0).unsqueeze(0)

            val_combined_embeds.append(val_image_embeds)
            val_combined_embeds.append(img_token_embeds)

        # audio
        if img_audio is not None:
            audio_result = audio_model.transcribe(img_audio)
            audio_text = ''
            for seg in audio_result['segments']:
                audio_text += seg['text']
            audio_text = audio_text.strip()
            audio_tokens = tokenizer(audio_text, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
            audio_embeds    = merged_model.model.embed_tokens(audio_tokens).unsqueeze(0)
            val_combined_embeds.append(audio_embeds)
            
        # text question
        if len(val_q) != 0:
            val_q_tokenised = tokenizer(val_q, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
            val_q_embeds    = merged_model.model.embed_tokens(val_q_tokenised).unsqueeze(0)
            val_combined_embeds.append(val_q_embeds)


        if img_audio is not None or len(val_q) != 0: # add QA Token
            
            QA_token_tensor = torch.tensor(QA_TOKEN_ID).to(device)
            QA_token_embeds = merged_model.model.embed_tokens(QA_token_tensor).unsqueeze(0).unsqueeze(0)
            val_combined_embeds.append(QA_token_embeds)
            
        val_combined_embeds = torch.cat(val_combined_embeds,dim=1)
        predicted_caption = merged_model.generate(inputs_embeds=val_combined_embeds,
                                                  max_new_tokens=max_generate_length,
                                                  return_dict_in_generate = True)
    
        predicted_captions_decoded = tokenizer.batch_decode(predicted_caption.sequences[:, 1:])[0] 
        predicted_captions_decoded = predicted_captions_decoded.replace("<|endoftext|>", "")  
    
    return predicted_captions_decoded
    

with gr.Blocks() as demo:

    gr.Markdown(
    """
    # Chat with MultiModal GPT !
    Build using combining clip model and phi-2 model.
    """
    )

    # app GUI
    with gr.Row():
        with gr.Column():
            img_input    = gr.Image(label='Image',type="pil")
            img_audio    = gr.Audio(label="Audio Query", sources=['microphone', 'upload'], type='filepath')
            img_question = gr.Text(label ='Text Query')
        with gr.Column():
            img_answer   = gr.Text(label ='Answer')

    section_btn = gr.Button("Submit")
    section_btn.click(model_generate_ans, inputs=[img_input,img_audio,img_question], outputs=[img_answer])
    
if __name__ == "__main__":
    demo.launch()